Nur Azida

@usm.my

Lecturer
Universiti Sains Malaysia



              

https://researchid.co/nurazidamn

RESEARCH INTERESTS

Wound healing
Ex vivo model
Cell and tissue culture
Adipose tissue

6

Scopus Publications

Scopus Publications

  • A Prospective Multicenter Randomized Controlled Trial to Evaluate the Efficacy of Chitosan Hydrogel Paste in Comparison to Commercial Hydroactive Gel as a Wound Bed Preparation
    Nur Azida Mohd Nasir, Arman Zaharil Mat Saad, Nor Sa'adah Bachok, Ahmad Hazri Ab Rashid, Zanariah Ujang, Kartini Noorsal, Norimah Yusof, Kamaruddin Hashim, Fatimah Mohd Nor, Farrah-Hani Imran,et al.

    Georg Thieme Verlag KG
    abstract Background This clinical trial aimed to evaluate the clinical efficacy of chitosan derivative hydrogel paste (CDHP) as a wound bed preparation for wounds with cavities. Methods This study enrolled 287 patients, with 143 patients randomized into the CDHP group (treatment) and 144 patients randomized into the commercial hydroactive gel (CHG) group (control). The granulation tissue, necrotic tissue, patient comfort, clinical signs, symptoms, and patient convenience during the application and removal of the dressing were assessed. Results The study was completed by 111 and 105 patients from the treatment and control groups, respectively. Both groups showed an increasing mean percentage of wound granulation over time when the initial wound size and comorbidity were adjusted (F(10,198) = 4.61; p < 0.001), but no significant difference was found between the groups (F(1,207) = 0.043; p = 0.953). The adjusted mean percentage of necrotic tissue of both groups showed a significant decrease over time (F(10,235) = 5.65; p <0.001), but no significant differences were found between the groups (F (1,244) = 0.487; p = 0.486). Conclusion CDHP is equivalent to CHG and is an alternative in wound management and wound bed preparation for wounds with cavities.

  • The fate of adipose tissue and adipose-derived stem cells in allograft
    Sadia Farhana, Yew Chun Kai, Ramlah Kadir, Wan Azman Wan Sulaiman, Nor Asyikin Nordin, and Nur Azida Mohd Nasir

    Springer Science and Business Media LLC

  • Adipose-derived stem cell: “treat or trick”
    Siti Syahira Airuddin, Ahmad Sukari Halim, Wan Azman Wan Sulaiman, Ramlah Kadir, and Nur Azida Mohd Nasir

    MDPI AG
    Stem cells have been widely used for treating disease due to the various benefits they offer in the curing process. Several treatments using stem cells have undergone clinical trials, such as cell-based therapies for heart disease, sickle cell disease, thalassemia, etc. Adipose-derived stem cells are some of the many mesenchymal stem cells that exist in our body that can be harvested from the abdomen, thighs, etc. Adipose tissue is easy to harvest, and its stem cells can be obtained in higher volumes compared to stem cells harvested from bone marrow, for which a more invasive technique is required with a smaller volume obtained. Many scientists have expressed interest in investigating the role of adipose-derived stem cells in treating disease since their use was first described. This is due to these stem cells’ ability to differentiate into multiple lineages and secrete a variety of growth factors and proteins. Previous studies have found that the hormones, cytokines, and growth factors contained in adipose tissue play major roles in the metabolic regulation of adipose tissue, as well as in energy balance and whole-body homeostasis through their endocrine, autocrine, and paracrine functions. These are thought to be important contributors to the process of tissue repair and regeneration. However, it remains unclear how effective and safe ADSCs are in treating diseases. The research that has been carried out to date is in order to investigate the impact of ADSCs in disease treatment, as described in this review, to highlight its “trick or treat” effect in medical treatment.

  • A review on micro- to nanocellulose biopolymer scaffold forming for tissue engineering applications
    H. P. S. Abdul Khalil, Fauziah Jummaat, Esam Bashir Yahya, N. G. Olaiya, A. S. Adnan, Munifah Abdat, Nasir N. A. M., Ahmad Sukari Halim, U. Seeta Uthaya Kumar, Rahul Bairwan,et al.

    MDPI AG
    Biopolymers have been used as a replacement material for synthetic polymers in scaffold forming due to its biocompatibility and nontoxic properties. Production of scaffold for tissue repair is a major part of tissue engineering. Tissue engineering techniques for scaffold forming with cellulose-based material is at the forefront of present-day research. Micro- and nanocellulose-based materials are at the forefront of scientific development in the areas of biomedical engineering. Cellulose in scaffold forming has attracted a lot of attention because of its availability and toxicity properties. The discovery of nanocellulose has further improved the usability of cellulose as a reinforcement in biopolymers intended for scaffold fabrication. Its unique physical, chemical, mechanical, and biological properties offer some important advantages over synthetic polymer materials. This review presents a critical overview of micro- and nanoscale cellulose-based materials used for scaffold preparation. It also analyses the relationship between the method of fabrication and properties of the fabricated scaffold. The review concludes with future potential research on cellulose micro- and nano-based scaffolds. The review provides an up-to-date summary of the status and future prospective applications of micro- and nanocellulose-based scaffolds for tissue engineering.

  • Fluorescent cell tracer dye permits real-time assessment of re-epithelialization in a serum-free ex vivo human skin wound assay
    Nur Azida Mohd Nasir, Ralf Paus, and David M. Ansell

    Wiley
    Ex vivo wounded human skin organ culture is an invaluable tool for translationally relevant preclinical wound healing research. However, studies incorporating this system are still underutilized within the field because of the low throughput of histological analysis required for downstream assessment. In this study, we use intravital fluorescent dye to lineage trace epidermal cells, demonstrating that wound re‐epithelialization of human ex vivo wounds occurs consistent with an extending shield mechanism of collective migration. Moreover, we also report a relatively simple method to investigate global epithelial closure of explants in culture using daily fluorescent dye treatment and en face imaging. This study is the first to quantify healing of ex vivo wounds in a longitudinal manner, providing global assessments for re‐epithelialization and tissue contraction. We show that this approach can identify alterations to healing with a known healing promoter. This methodological study highlights the utility of human ex vivo wounds in enhancing our understanding of mechanisms of human skin repair and in evaluating novel therapies to improve healing outcome.

  • Antibacterial properties of tualang honey and its effect in burn wound management: A comparative study
    Nur-Azida Mohd Nasir, Ahmad Sukari Halim, Kirnpal-Kaur Banga Singh, Ananda Aravazhi Dorai, and Mehru-Nisha Muhammad Haneef

    Springer Science and Business Media LLC
    BackgroundThe use of honey as a natural product of Apis spp. for burn treatment has been widely applied for centuries. Tualang honey has been reported to have antibacterial properties against various microorganisms, including those from burn-related diagnoses, and is cheaper and easier to be absorbed by Aquacel dressing. The aim of this study is to evaluate the potential antibacterial properties of tualang honey dressing and to determine its effectiveness as a partial thickness burn wound dressing.MethodsIn order to quantitate the bioburden of the swabs, pour plates were performed to obtain the colony count (CFU/ml). Swabs obtained from burn wounds were streaked on blood agar and MacConkey agar for bacterial isolation and identification. Later, antibacterial activity of Aquacel-tualang honey, Aquacel-Manuka honey, Aquacel-Ag and Aquacel- plain dressings against bacteria isolated from patients were tested (in-vitro) to see the effectiveness of those dressings by zone of inhibition assays.ResultsSeven organisms were isolated. Four types of Gram-negative bacteria, namely Enterobacter cloacae, Klebsiella pneumoniae, Pseudomonas spp. and Acinetobacter spp., and three Gram-positive bacteria, namely Staphylococcus aureus, coagulase-negative Staphylococcus aureus (CONS) and Streptococcus spp., were isolated. Total bacterial count decreased on day 6 and onwards. In the in-vitro antibacterial study, Aquacel-Ag and Aquacel-Manuka honey dressings gave better zone of inhibition for Gram positive bacteria compared to Aquacel-Tualang honey dressing. However, comparable results were obtained against Gram negative bacteria tested with Aquacel-Manuka honey and Aquacel-Tualang honey dressing.ConclusionsTualang honey has a bactericidal as well as bacteriostatic effect. It is useful as a dressing, as it is easier to apply and is less sticky compared to Manuka honey. However, for Gram positive bacteria, tualang honey is not as effective as usual care products such as silver-based dressing or medical grade honey dressing.