Jordi Guiu

Verified email at

Copenhagen University


Scopus Publications

Scopus Publications

  • Mesenchymal-epithelial crosstalk shapes intestinal regionalisation via Wnt and Shh signalling
    Martti Maimets, Marianne Terndrup Pedersen, Jordi Guiu, Jes Dreier, Malte Thodberg, Yasuko Antoku, Pawel J. Schweiger, Leonor Rib, Raul Bardini Bressan, Yi Miao, K. Christopher Garcia, Albin Sandelin, Palle Serup, and Kim B. Jensen

    Nature Communications, eISSN: 20411723, Published: December 2022 Springer Science and Business Media LLC
    AbstractOrgans are anatomically compartmentalised to cater for specialised functions. In the small intestine (SI), regionalisation enables sequential processing of food and nutrient absorption. While several studies indicate the critical importance of non-epithelial cells during development and homeostasis, the extent to which these cells contribute to regionalisation during morphogenesis remains unexplored. Here, we identify a mesenchymal-epithelial crosstalk that shapes the developing SI during late morphogenesis. We find that subepithelial mesenchymal cells are characterised by gradients of factors supporting Wnt signalling and stimulate epithelial growth in vitro. Such a gradient impacts epithelial gene expression and regional villus formation along the anterior-posterior axis of the SI. Notably, we further provide evidence that Wnt signalling directly regulates epithelial expression of Sonic Hedgehog (SHH), which, in turn, acts on mesenchymal cells to drive villi formation. Taken together our results uncover a mechanistic link between Wnt and Hedgehog signalling across different cellular compartments that is central for anterior-posterior regionalisation and correct formation of the SI.

  • Human Intestinal Organoids: Promise and Challenge
    Jasin Taelman, Mònica Diaz, and Jordi Guiu

    Frontiers in Cell and Developmental Biology, eISSN: 2296634X, Published: 11 March 2022 Frontiers Media SA
    The study of human intestinal biology in healthy and diseased conditions has always been challenging. Primary obstacles have included limited tissue accessibility, inadequate in vitro maintenance and ethical constrains. The development of three-dimensional organoid cultures has transformed this entirely. Intestinal organoids are self-organized three-dimensional structures that partially recapitulate the identity, cell heterogeneity and cell behaviour of the original tissue in vitro. This includes the capacity of stem cells to self-renew, as well as to differentiate towards major intestinal lineages. Therefore, over the past decade, the use of human organoid cultures has been instrumental to model human intestinal development, homeostasis, disease, and regeneration. Intestinal organoids can be derived from pluripotent stem cells (PSC) or from adult somatic intestinal stem cells (ISC). Both types of organoid sources harbour their respective strengths and weaknesses. In this mini review, we describe the applications of human intestinal organoids, discussing the differences, advantages, and disadvantages of PSC-derived and ISC-derived organoids.

  • Rebuttal to: Organoid vs Mouse Model: Which is a Better Research Tool to Understand the Biologic Mechanisms of Intestinal Epithelium?
    Jordi Guiu and Kim B. Jensen

    Cellular and Molecular Gastroenterology and Hepatology, eISSN: 2352345X, Pages: 193, Published: January 2022 Elsevier BV

  • In Vivo Studies Should Take Priority When Defining Mechanisms of Intestinal Crypt Morphogenesis
    Jordi Guiu and Kim B. Jensen

    Cellular and Molecular Gastroenterology and Hepatology, eISSN: 2352345X, Pages: 1-3, Published: January 2022 Elsevier BV

  • A Quantitative Lineage-Tracing Approach to Understand Morphogenesis in Gut
    Svetlana Ulyanchenko and Jordi Guiu

    Methods in Molecular Biology, ISSN: 10643745, eISSN: 19406029, Volume: 2258, Pages: 29-40, Published: 2021 Springer US
    Lineage-tracing experiments aim to identify and track the progeny and/or fate of cells. The use of inducible recombinases and fluorescent reporters has been instrumental in defining cellular hierarchies and allowing for the identification of stem cells in an unperturbed in vivo setting. The refinement of these approaches, labeling single cells, and the subsequent quantitative analysis of the clonal dynamics have allowed the comparison of different stem cell populations as well as establishing different mechanisms of cellular replenishment during steady-state homeostasis as well as during morphogenesis and disease. Utilizing this approach, it is now possible to establish the cellular hierarchy in a given tissue and the frequency of cell fate decisions on a population basis, thus providing a comprehensive analysis of cellular behavior in vivo. Although in this chapter we describe a protocol for lineage tracing of cells from fetal intestinal epithelium to the adult intestine, this approach can be widely applied to quantitatively assess the cell fate of any fetal cell during morphogenesis.

  • Tracing the origin of adult intestinal stem cells
    Jordi Guiu, Edouard Hannezo, Shiro Yui, Samuel Demharter, Svetlana Ulyanchenko, Martti Maimets, Anne Jørgensen, Signe Perlman, Lene Lundvall, Linn Salto Mamsen, Agnete Larsen, Rasmus H. Olesen, Claus Yding Andersen, Lea Langhoff Thuesen, Kristine Juul Hare, Tune H. Pers, Konstantin Khodosevich, Benjamin D. Simons, and Kim B. Jensen

    Nature, ISSN: 00280836, eISSN: 14764687, Volume: 570, Issue: 7759, Pages: 107-111, Published: 6 June 2019 Springer Science and Business Media LLC
    Adult intestinal stem cells are located at the bottom of crypts of Lieberkühn, where they express markers such as LGR51,2 and fuel the constant replenishment of the intestinal epithelium1. Although fetal LGR5-expressing cells can give rise to adult intestinal stem cells3,4, it remains unclear whether this population in the patterned epithelium represents unique intestinal stem-cell precursors. Here we show, using unbiased quantitative lineage-tracing approaches, biophysical modelling and intestinal transplantation, that all cells of the mouse intestinal epithelium—irrespective of their location and pattern of LGR5 expression in the fetal gut tube—contribute actively to the adult intestinal stem cell pool. Using 3D imaging, we find that during fetal development the villus undergoes gross remodelling and fission. This brings epithelial cells from the non-proliferative villus into the proliferative intervillus region, which enables them to contribute to the adult stem-cell niche. Our results demonstrate that large-scale remodelling of the intestinal wall and cell-fate specification are closely linked. Moreover, these findings provide a direct link between the observed plasticity and cellular reprogramming of differentiating cells in adult tissues following damage5–9, revealing that stem-cell identity is an induced rather than a hardwired property.Lineage tracing, biophysical modelling and intestinal transplantation approaches are used to demonstrate that, in the mouse fetal intestinal epithelium, cells are highly plastic with respect to cellular identity and, independent of LGR5 expression and cell position, can contribute to the adult stem cell compartment.

  • YAP/TAZ-Dependent Reprogramming of Colonic Epithelium Links ECM Remodeling to Tissue Regeneration
    Shiro Yui, Luca Azzolin, Martti Maimets, Marianne Terndrup Pedersen, Robert P. Fordham, Stine L. Hansen, Hjalte L. Larsen, Jordi Guiu, Mariana R.P. Alves, Carsten F. Rundsten, Jens V. Johansen, Yuan Li, Chris D. Madsen, Tetsuya Nakamura, Mamoru Watanabe, Ole H. Nielsen, Pawel J. Schweiger, Stefano Piccolo, and Kim B. Jensen

    Cell Stem Cell, ISSN: 19345909, eISSN: 18759777, Pages: 35-49.e7, Published: 4 January 2018 Elsevier BV
    Summary Tissue regeneration requires dynamic cellular adaptation to the wound environment. It is currently unclear how this is orchestrated at the cellular level and how cell fate is affected by severe tissue damage. Here we dissect cell fate transitions during colonic regeneration in a mouse dextran sulfate sodium (DSS) colitis model, and we demonstrate that the epithelium is transiently reprogrammed into a primitive state. This is characterized by de novo expression of fetal markers as well as suppression of markers for adult stem and differentiated cells. The fate change is orchestrated by remodeling the extracellular matrix (ECM), increased FAK/Src signaling, and ultimately YAP/TAZ activation. In a defined cell culture system recapitulating the extracellular matrix remodeling observed in vivo, we show that a collagen 3D matrix supplemented with Wnt ligands is sufficient to sustain endogenous YAP/TAZ and induce conversion of cell fate. This provides a simple model for tissue regeneration, implicating cellular reprogramming as an essential element.

  • Ret receptor tyrosine kinase sustains proliferation and tissue maturation in intestinal epithelia
    Daniel Perea, Jordi Guiu, Bruno Hudry, Chrysoula Konstantinidou, Alexandra Milona, Dafni Hadjieconomou, Thomas Carroll, Nina Hoyer, Dipa Natarajan, Jukka Kallijärvi, James A Walker, Peter Soba, Nikhil Thapar, Alan J Burns, Kim B Jensen, and Irene Miguel‐Aliaga

    EMBO Journal, ISSN: 02614189, eISSN: 14602075, Pages: 3029-3045, Published: 16 October 2017 EMBO
    Expression of the Ret receptor tyrosine kinase is a defining feature of enteric neurons. Its importance is underscored by the effects of its mutation in Hirschsprung disease, leading to absence of gut innervation and severe gastrointestinal symptoms. We report a new and physiologically significant site of Ret expression in the intestine: the intestinal epithelium. Experiments in Drosophila indicate that Ret is expressed both by enteric neurons and adult intestinal epithelial progenitors, which require Ret to sustain their proliferation. Mechanistically, Ret is engaged in a positive feedback loop with Wnt/Wingless signalling, modulated by Src and Fak kinases. We find that Ret is also expressed by the developing intestinal epithelium of mice, where its expression is maintained into the adult stage in a subset of enteroendocrine/enterochromaffin cells. Mouse organoid experiments point to an intrinsic role for Ret in promoting epithelial maturation and regulating Wnt signalling. Our findings reveal evolutionary conservation of the positive Ret/Wnt signalling feedback in both developmental and homeostatic contexts. They also suggest an epithelial contribution to Ret loss‐of‐function disorders such as Hirschsprung disease.

  • Notch signal strength controls cell fate in the haemogenic endothelium
    Leonor Gama-Norton, Eva Ferrando, Cristina Ruiz-Herguido, Zhenyi Liu, Jordi Guiu, Abul B. M. M. K. Islam, Sung-Uk Lee, Minhong Yan, Cynthia J. Guidos, Nuria López-Bigas, Takahiro Maeda, Lluis Espinosa, Raphael Kopan, and Anna Bigas

    Nature Communications, eISSN: 20411723, Published: 14 October 2015 Springer Science and Business Media LLC
    Abstract Acquisition of the arterial and haemogenic endothelium fates concurrently occur in the aorta–gonad–mesonephros (AGM) region prior to haematopoietic stem cell (HSC) generation. The arterial programme depends on Dll4 and the haemogenic endothelium/HSC on Jag1-mediated Notch1 signalling. How Notch1 distinguishes and executes these different programmes in response to particular ligands is poorly understood. By using two Notch1 activation trap mouse models with different sensitivity, here we show that arterial endothelial cells and HSCs originate from distinct precursors, characterized by different Notch1 signal strengths. Microarray analysis on AGM subpopulations demonstrates that the Jag1 ligand stimulates low Notch strength, inhibits the endothelial programme and is permissive for HSC specification. In the absence of Jag1, endothelial cells experience high Dll4-induced Notch activity and select the endothelial programme, thus precluding HSC formation. Interference with the Dll4 signal by ligand-specific blocking antibodies is sufficient to inhibit the endothelial programme and favour specification of the haematopoietic lineage.

  • From Definitive Endoderm to Gut - A Process of Growth and Maturation
    Jordi Guiu and Kim B. Jensen

    Stem Cells and Development, ISSN: 15473287, eISSN: 15578534, Pages: 1972-1983, Published: 1 September 2015 Mary Ann Liebert Inc
    The intestine and colon carries out vital functions, and their lifelong maintenance is of the upmost importance. Research over the past decades has carefully addressed bowel function, how it is maintained and begun to unravel how disorders such as cancer and inflammatory bowel disease form. In contrast, very little is known about the molecular mechanisms that trigger tissue maturation during development. With this review, our aim is to carefully provide a critical appraisal of the literature to give a state-of-the-art view of intestinal development. Starting from definitive endoderm at gastrulation to the emergence of a structure with mature properties, the tissue undergoes complex morphogenetic processes that rely on both biophysical changes and secreted signaling molecules. We will also discuss how new and exciting developments using in vitro models are likely to provide new insights into this process and potential therapeutic strategies for gastrointestinal disorders.

  • Notch1 acts via Foxc2 to promote definitive hematopoiesis via effects on hemogenic endothelium
    Il Ho Jang, Yi-Fen Lu, Long Zhao, Pamela L. Wenzel, Tsutomu Kume, Sumon M. Datta, Natasha Arora, Jordi Guiu, Mounia Lagha, Peter G. Kim, Eun Kyoung Do, Jae Ho Kim, Thorsten M. Schlaeger, Leonard I. Zon, Anna Bigas, Caroline E. Burns, and George Q. Daley

    Blood, ISSN: 00064971, eISSN: 15280020, Volume: 125, Pages: 1418-1426, Published: 2015 American Society of Hematology
    Key Points Notch1 induction promotes specification of hemogenic endothelial cells during embryonic stem cell differentiation. Foxc2 functions downstream of Notch in specification of hemogenic endothelium in mouse and zebrafish embryos.

  • Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch
    E. Lopez-Arribillaga, V. Rodilla, L. Pellegrinet, J. Guiu, M. Iglesias, A. C. Roman, S. Gutarra, S. Gonzalez, P. Munoz-Canoves, P. Fernandez-Salguero, F. Radtke, A. Bigas, and L. Espinosa

    Development (Cambridge), ISSN: 09501991, eISSN: 14779129, Volume: 142, Pages: 41-50, Published: 1 January 2015 The Company of Biologists
    Genetic data indicate that abrogation of Notch-Rbpj or Wnt-β-catenin pathways results in the loss of the intestinal stem cells (ISCs). However, whether the effect of Notch is direct or due to the aberrant differentiation of the transit-amplifying cells into post-mitotic goblet cells is unknown. To address this issue, we have generated composite tamoxifen-inducible intestine-specific genetic mouse models and analyzed the expression of intestinal differentiation markers. Importantly, we found that activation of β-catenin partially rescues the differentiation phenotype of Rbpj deletion mutants, but not the loss of the ISC compartment. Moreover, we identified Bmi1, which is expressed in the ISC and progenitor compartments, as a gene that is co-regulated by Notch and β-catenin. Loss of Bmi1 resulted in reduced proliferation in the ISC compartment accompanied by p16INK4a and p19ARF (splice variants of Cdkn2a) accumulation, and increased differentiation to the post-mitotic goblet cell lineage that partially mimics Notch loss-of-function defects. Finally, we provide evidence that Bmi1 contributes to ISC self-renewal. Summary: The polycomb complex protein Bmi1 is regulated by Notch and is required to maintain stem cell function in the mouse intestine.

  • Identification of Cdca7 as a novel Notch transcriptional target involved in hematopoietic stem cell emergence
    Jordi Guiu, Dylan J.M. Bergen, Emma De Pater, Abul B.M.M.K. Islam, Verónica Ayllón, Leonor Gama-Norton, Cristina Ruiz-Herguido, Jessica González, Nuria López-Bigas, Pablo Menendez, Elaine Dzierzak, Lluis Espinosa, and Anna Bigas

    Journal of Experimental Medicine, ISSN: 00221007, eISSN: 15409538, Volume: 211, Pages: 2411-2423, Published: 2014 Rockefeller University Press
    Hematopoietic stem cell (HSC) specification occurs in the embryonic aorta and requires Notch activation; however, most of the Notch-regulated elements controlling de novo HSC generation are still unknown. Here, we identify putative direct Notch targets in the aorta-gonad-mesonephros (AGM) embryonic tissue by chromatin precipitation using antibodies against the Notch partner RBPj. By ChIP-on-chip analysis of the precipitated DNA, we identified 701 promoter regions that were candidates to be regulated by Notch in the AGM. One of the most enriched regions corresponded to the Cdca7 gene, which was subsequently confirmed to recruit the RBPj factor but also Notch1 in AGM cells. We found that during embryonic hematopoietic development, expression of Cdca7 is restricted to the hematopoietic clusters of the aorta, and it is strongly up-regulated in the hemogenic population during human embryonic stem cell hematopoietic differentiation in a Notch-dependent manner. Down-regulation of Cdca7 mRNA in cultured AGM cells significantly induces hematopoietic differentiation and loss of the progenitor population. Finally, using loss-of-function experiments in zebrafish, we demonstrate that CDCA7 contributes to HSC emergence in vivo during embryonic development. Thus, our study identifies Cdca7 as an evolutionary conserved Notch target involved in HSC emergence.

  • Notch and Wnt signaling in the emergence of hematopoietic stem cells
    Anna Bigas, Jordi Guiu, and Leonor Gama-Norton

    Blood Cells, Molecules, and Diseases, ISSN: 10799796, eISSN: 10960961, Pages: 264-270, Published: December 2013 Elsevier BV
    Hematopoietic stem cells (HSC), which reside in the marrow of adult mammals and sustain hematopoiesis for the lifetime of the organism, are specified and generated during embryonic development. We are just beginning to understand how HSC develop from more primitive cells and the complexity of the signaling pathways involved. In this work, we review the role of two crucial pathways, Notch and Wnt, in the specification and development of HSC and their nascent microenvironment, the arterial vessels.

  • Hes repressors are essential regulators of hematopoietic stem cell development downstream of notch signaling
    Jordi Guiu, Ritsuko Shimizu, Teresa D’Altri, Stuart T. Fraser, Jun Hatakeyama, Emery H. Bresnick, Ryoichiro Kageyama, Elaine Dzierzak, Masayuki Yamamoto, Lluis Espinosa, and Anna Bigas

    Journal of Experimental Medicine, ISSN: 00221007, eISSN: 15409538, Volume: 210, Pages: 71-84, Published: January 2013 Rockefeller University Press
    Previous studies have identified Notch as a key regulator of hematopoietic stem cell (HSC) development, but the underlying downstream mechanisms remain unknown. The Notch target Hes1 is widely expressed in the aortic endothelium and hematopoietic clusters, though Hes1-deficient mice show no overt hematopoietic abnormalities. We now demonstrate that Hes is required for the development of HSC in the mouse embryo, a function previously undetected as the result of functional compensation by de novo expression of Hes5 in the aorta/gonad/mesonephros (AGM) region of Hes1 mutants. Analysis of embryos deficient for Hes1 and Hes5 reveals an intact arterial program with overproduction of nonfunctional hematopoietic precursors and total absence of HSC activity. These alterations were associated with increased expression of the hematopoietic regulators Runx1, c-myb, and the previously identified Notch target Gata2. By analyzing the Gata2 locus, we have identified functional RBPJ-binding sites, which mutation results in loss of Gata2 reporter expression in transgenic embryos, and functional Hes-binding sites, which mutation leads to specific Gata2 up-regulation in the hematopoietic precursors. Together, our findings show that Notch activation in the AGM triggers Gata2 and Hes1 transcription, and next HES-1 protein represses Gata2, creating an incoherent feed-forward loop required to restrict Gata2 expression in the emerging HSCs.

  • Hematopoietic stem cell development requires transient Wnt/β-catenin activity
    Cristina Ruiz-Herguido, Jordi Guiu, Teresa D'Altri, Julia Inglés-Esteve, Elaine Dzierzak, Lluis Espinosa, and Anna Bigas

    Journal of Experimental Medicine, ISSN: 00221007, eISSN: 15409538, Volume: 209, Pages: 1457-1468, Published: July 2012 Rockefeller University Press
    Understanding how hematopoietic stem cells (HSCs) are generated and the signals that control this process is a crucial issue for regenerative medicine applications that require in vitro production of HSC. HSCs emerge during embryonic life from an endothelial-like cell population that resides in the aorta-gonad-mesonephros (AGM) region. We show here that β-catenin is nuclear and active in few endothelial nonhematopoietic cells closely associated with the emerging hematopoietic clusters of the embryonic aorta during mouse development. Importantly, Wnt/β-catenin activity is transiently required in the AGM to generate long-term HSCs and to produce hematopoietic cells in vitro from AGM endothelial precursors. Genetic deletion of β-catenin from the embryonic endothelium stage (using VE-cadherin–Cre recombinase), but not from embryonic hematopoietic cells (using Vav1-Cre), precludes progression of mutant cells toward the hematopoietic lineage; however, these mutant cells still contribute to the adult endothelium. Together, those findings indicate that Wnt/β-catenin activity is needed for the emergence but not the maintenance of HSCs in mouse embryos.

  • The Notch/Hes1 pathway sustains NF-κB activation through CYLD repression in T cell leukemia
    Lluis Espinosa, Severine Cathelin, Teresa D'Altri, Thomas Trimarchi, Alexander Statnikov, Jordi Guiu, Veronica Rodilla, Julia Inglés-Esteve, Josep Nomdedeu, Beatriz Bellosillo, Carles Besses, Omar Abdel-Wahab, Nicole Kucine, Shao-Cong Sun, Guangchan Song, Charles C. Mullighan, Ross L. Levine, Klaus Rajewsky, Iannis Aifantis, and Anna Bigas

    Cancer Cell, ISSN: 15356108, Pages: 268-281, Published: September 2010 Elsevier BV
    It was previously shown that the NF-κB pathway is downstream of oncogenic Notch1 in T cell acute lymphoblastic leukemia (T-ALL). Here, we visualize Notch-induced NF-κB activation using both human T-ALL cell lines and animal models. We demonstrate that Hes1, a canonical Notch target and transcriptional repressor, is responsible for sustaining IKK activation in T-ALL. Hes1 exerts its effects by repressing the deubiquitinase CYLD, a negative IKK complex regulator. CYLD expression was found to be significantly suppressed in primary T-ALL. Finally, we demonstrate that IKK inhibition is a promising option for the targeted therapy of T-ALL as specific suppression of IKK expression and function affected both the survival of human T-ALL cells and the maintenance of the disease in vivo.

  • Impaired embryonic haematopoiesis yet normal arterial development in the absence of the Notch ligand Jagged1
    Àlex Robert-Moreno, Jordi Guiu, Cristina Ruiz-Herguido, M Eugenia López, Julia Inglés-Esteve, Lluis Riera, Alex Tipping, Tariq Enver, Elaine Dzierzak, Thomas Gridley, Lluis Espinosa, and Anna Bigas

    EMBO Journal, ISSN: 02614189, eISSN: 14602075, Pages: 1886-1895, Published: 9 July 2008 Wiley
    Specific deletion of Notch1 and RBPjκ in the mouse results in abrogation of definitive haematopoiesis concomitant with the loss of arterial identity at embryonic stage. As prior arterial determination is likely to be required for the generation of embryonic haematopoiesis, it is difficult to establish the specific haematopoietic role of Notch in these mutants. By analysing different Notch‐ligand‐null embryos, we now show that Jagged1 is not required for the establishment of the arterial fate but it is required for the correct execution of the definitive haematopoietic programme, including expression of GATA2 in the dorsal aorta. Moreover, successful haematopoietic rescue of the Jagged1‐null AGM cells was obtained by culturing them with Jagged1‐expressing stromal cells or by lentiviral‐mediated transduction of the GATA2 gene. Taken together, our results indicate that Jagged1‐mediated activation of Notch1 is responsible for regulating GATA2 expression in the AGM, which in turn is essential for definitive haematopoiesis in the mouse.