Verified @gmail.com
Assistant Professor, School of Digital Science
Universiti Brunei Darussalam
Dr Nagender Aneja is working as Asst. Prof. and Programme Leader (Computer science) at School of Digital Science, Universiti Brunei Darussalam. He did his PhD in Computer Engineering from J.C. Bose University of Science and Technology, YMCA and M.E. Computer Technology and Applications from Delhi College of Engineering. He is currently working in area of Deep Learning. He has 20+ years of experience that includes five years of Industry Experience at CPA Global for Microsoft Patent Research Services. He has done several process innovations including developing automation tools for patent analysis at CPA Global and developed expert directory for Universiti Brunei Darussalam. He has been awarded Brunei ICT Award 2016 and two patents from USPTO. He is also founder and developer of ResearchID.co.
Please visit https://naneja.github.io/ for more information
Ph.D. Computer Engineering
M.E. Computer Technology and Applications
Computer Science, Artificial Intelligence, Computer Vision and Pattern Recognition, Computer Science Applications
Deep learning needs lots of data for training; however, in some industrial applications, the significant amount of data may not be available, limiting the deep learning approach. Modern techniques like transfer learning and generative adversarial networks show some hope to solve this challenge. The objective of the project is to propose new techniques for deep learning training.
Deep-learning networks are susceptible to butterfly effect wherein small alterations in the input data can point to drastically distinctive outcomes, making the deep learning network inherently volatile. Thus, the output of deep learning network may be controlled by altering its input or by adding noise. Research has shown that it is possible to fool the deep learning network by adding an imperceptible amount of noise in the input.
Generative Adversarial Networks may have potential to solve the text-to-image problem, but there are challenges in using GANs for NLP. Image classification have got benefitted with large mini-batches and one of the open question the question https://distill.pub/2019/gan-open-problems/#batchsize is if they can also help to scale GANs
Scopus Publications
Scholar Citations
Scholar h-index
Scholar i10-index
Kavita Sheoran, Arpit Bajgoti, Rishik Gupta, Nishtha Jatana, Geetika Dhand, Charu Gupta, Pankaj Dadheech, Umar Yahya, and Nagender Aneja
IEEE Access, eISSN: 21693536, Pages: 15485-15495, Published: 2023
Institute of Electrical and Electronics Engineers (IEEE)
Nagender Aneja, Sandhya Aneja, and Bharat Bhargava
Wireless Communications and Mobile Computing, ISSN: 15308669, eISSN: 15308677, Volume: 2023, Published: 2023
Hindawi Limited
WiFi and private 5G networks, commonly referred to as P5G, provide Internet of Things (IoT) devices the ability to communicate at fast speeds, with low latency and with a high capacity. Will they coexist and share the burden of delivering a connection to devices at home, on the road, in the workplace, and at a park or a stadium? Or will one replace the other to manage the increase in endpoints and traffic in the enterprise, campus, and manufacturing environments? In this research, we describe IoT device testbeds to collect network traffic in a local area network and cyberspace including beyond 5G/6G network traffic traces at different layers. We also describe research problems and challenges, such as traffic classification and traffic prediction by the traffic traces of devices. An AI-enabled hierarchical learning architecture for the problems above using sources like network packets, frames, and signals from the traffic traces with machine learning models is also presented.
Ajay Kumar Bansal, Virendra Swaroop Sangtani, Pankaj Dadheech, Nagender Aneja, and Umar Yahya
Applied Artificial Intelligence, ISSN: 08839514, eISSN: 10876545, Published: 2023
Informa UK Limited
Sandhya Aneja, Nagender Aneja, and Ponnurangam Kumaraguru
IAES International Journal of Artificial Intelligence, ISSN: 20894872, eISSN: 22528938, Pages: 1252-1260, Published: December 2022
Institute of Advanced Engineering and Science
<span>Media news are making a large part of public opinion and, therefore, must not be fake. News on web sites, blogs, and social media must be analyzed before being published. In this paper, we present linguistic characteristics of media news items to differentiate between fake news and real news using machine learning algorithms. Neural fake news generation, headlines created by machines, semantic incongruities in text and image captions generated by machine are other types of fake news problems. These problems use neural networks which mainly control distributional features rather than evidence. We propose applying correlation between features set and class, and correlation among the features to compute correlation attribute evaluation metric and covariance metric to compute variance of attributes over the news items. Features unique, negative, positive, and cardinal numbers with high values on the metrics are observed to provide a high area under the curve (AUC) and F1-score.</span>
IAES International Journal of Artificial Intelligence, ISSN: 20894872, eISSN: 22528938, Pages: 961-968, Published: September 2022
Sandhya Aneja, Nagender Aneja, Pg Emeroylariffion Abas, and Abdul Ghani Naim
IAES International Journal of Artificial Intelligence, ISSN: 20894872, eISSN: 22528938, Pages: 129-136, Published: March 2022
Institute of Advanced Engineering and Science
Transfer learning allows us to exploit knowledge gained from one task to assist in solving another but relevant task. In modern computer vision research, the question is which architecture performs better for a given dataset. In this paper, we compare the performance of 14 pre-trained ImageNet models on the histopathologic cancer detection dataset, where each model has been configured as naive model, feature extractor model, or fine-tuned model. Densenet161 has been shown to have high precision whilst Resnet101 has a high recall. A high precision model is suitable to be used when follow-up examination cost is high, whilst low precision but a high recall/sensitivity model can be used when the cost of follow-up examination is low. Results also show that transfer learning helps to converge a model faster.
Anand Kumar, Dharmesh Dhabliya, Pankaj Agarwal, Nagender Aneja, Pankaj Dadheech, Sajjad Shaukat Jamal, and Owusu Agyeman Antwi
Computational Intelligence and Neuroscience, ISSN: 16875265, eISSN: 16875273, Volume: 2022, Published: 2022
Hindawi Limited
The Internet of Things (IoT) ushers in a new era of communication that depends on a broad range of things and many types of communication technologies to share information. This new age of communication will be characterised by the following characteristics: Because all of the IoT’s objects are connected to one another and because they function in environments that are not protected, it poses a significantly greater number of issues, constraints, and challenges than do traditional computing systems. This is due to the fact that traditional computing systems do not have as many interconnected components. Because of this, it is imperative that security be prioritised in a new approach, which is not something that is currently present in conventional computer systems. The Wireless Sensor Network, often known as WSN, and the Mobile Ad hoc Network are two technologies that play significant roles in the process of building an Internet of Things system. These technologies are used in a wide variety of activities, including sensing, environmental monitoring, data collecting, heterogeneous communication techniques, and data processing, amongst others. Because it incorporates characteristics of both MANET and WSN, IoT is susceptible to the same kinds of security issues that affect those other networks. An assault known as a Delegate Entity Attack (DEA) is a subclass of an attack known as a Denial of Service (DoS). The attacker sends an unacceptable number of control packets that have the appearance of being authentic. DoS assaults may take many different forms, and one of those kinds is an SD attack. Because of this, it is far more difficult to recognise this form of attack than a simple one that depletes the battery’s capacity. One of the other key challenges that arise in a network during an SD attack is that there is the need to enhance energy management and prolong the lifespan of IoT nodes. This is one of the other significant issues that arise in a network when an SD attack is occurs. It is recommended that you make use of a Random Number Generator with Hierarchical Intrusion Detection System, abbreviated as RNGHID for short. The ecosystem of the Internet of Things is likely to be segmented into a great number of separate sectors and clusters. The HIPS system has been partitioned into two entities, which are referred to as the Delegate Entity (DE) and the Pivotal Entity, in order to identify any nodes in the network that are behaving in an abnormal manner. These entities are known, respectively, as the Delegate Entity and the Pivotal Entity (PE). Once the anomalies have been identified, it will be possible to pinpoint the area of the SD attack torture and the damaging activities that have been taken place. A warning message, generated by the Malicious Node Alert System (MNAS), is broadcast across the network in order to inform the other nodes that the network is under attack. This message classifies the various sorts of attacks based on the results of an algorithm that employs machine learning. The proposed protocol displays various desired properties, such as the capacity to conduct indivisible authentication, rapid authentication, and minimum overhead in both transmission and storage. These are only a few of the desirable attributes.
Gagan Thakral, Sapna Gambhir, and Nagender Aneja
2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing, COM-IT-CON 2022, Pages: 662-666, Published: 2022
IEEE
Sudhir Sharma, Kaushal Kishor Bhatt, Rimmy Chabra, and Nagender Aneja
Lecture Notes in Networks and Systems, ISSN: 23673370, eISSN: 23673389, Volume: 392, Pages: 577-587, Published: 2022
Springer Nature Singapore
Sandeep Singh, Shalini Bhaskar Bajaj, Khushboo Tripathi, and Nagendra Aneja
Proceedings of 2nd International Conference on Innovative Practices in Technology and Management, ICIPTM 2022, Pages: 707-712, Published: 2022
IEEE
In this paper the Mobile Ad Hoc Network (MANET) was considered for analyzing the performance of Destination Sequenced Distance Vector (DSDV) of Proactive class and Ad Hoc On-Demand Distance Vector (AODV) and Dynamic Source Routing Protocol (DSR) of Reactive class. The protocols were simulated using the NS-2 (Network Simulator 2.35) package on Linux 12.04. The paper focuses on performance parameters e.g. Packet size, Speed, Packet rate, Transmission Control Protocol (TCP) types and Number of Packets and energy in the network. Simulation results shows that DSR gives better performance as compared to AODV and DSDV. The results were compared for inspection of packet delivery rate, % Lost packets, throughput and Jitter on varying Packet size, TCP types, and the number of packets in queue by changing packet size. The implementation study can further extend by applying artificial algorithms in MANET for enhancing the better results in presence of any type of attacks too.
Sandhya Aneja, Nagender Aneja, Bharat Bhargava, and Rajarshi Roy Chowdhury
International Journal of Communication Networks and Distributed Systems, ISSN: 17543916, eISSN: 17543924, Pages: 171-198, Published: 2022
Inderscience Publishers
Device fingerprinting is a problem of identifying a network device using network traffic data to secure against cyber-attacks. Automated device classification from a large set of network traffic features space is challenging for the devices connected in the cyberspace. In this work, the idea is to define a device-specific unique fingerprint by analysing solely inter-arrival time of packets as a feature to identify a device. Neural networks are the universal function approximation which learn abstract, highlevel, nonlinear representation of training data. Deep convolution neural network is used on images of inter-arrival time signature for device fingerprinting of 58 non-IoT devices of 5-11 types. To evaluate the performance, we compared ResNet-50 layer and basic CNN-5 layer architectures. We observed that device type identification models perform better than device identification. We also found that when deep learning models are attacked over device signature, the models identify the change in signature, and classify the device in the wrong class thereby the classification performance of the models degrades. The performance of the models to detect the attacks are significantly different from each other though both models indicate the system under attack.
Sandhya Aneja, Melanie Ang Xuan En, and Nagender Aneja
2022 14th International Conference on COMmunication Systems and NETworkS, COMSNETS 2022, Pages: 231-235, Published: 2022
IEEE
Artificial Intelligence (AI) development has encouraged many new research areas, including AI-enabled Internet of Things (IoT) network. AI analytics and intelligent paradigms greatly improve learning efficiency and accuracy. Applying these learning paradigms to network scenarios provide technical advantages of new networking solutions. In this paper, we propose an improved approach for IoT security from data perspective. The network traffic of IoT devices can be analyzed using AI techniques. The Adversary Learning (AdLIoTLog) model is proposed using Recurrent Neural Network (RNN) with attention mechanism on sequences of network events in the network traffic. We define network events as a sequence of the time series packets of protocols captured in the log. We have considered different packets TCP packets, UDP packets, and HTTP packets in the network log to make the algorithm robust. The distributed IoT devices can collaborate to cripple our world which is extending to Internet of Intelligence. The time series packets are converted into structured data by removing noise and adding timestamps. The resulting data set is trained by RNN and can detect the node pairs collaborating with each other. We used the BLEU score to evaluate the model performance. Our results show that the predicting performance of the AdLIoTLog model trained by our method degrades by 3-4% in the presence of attack in comparison to the scenario when the network is not under attack. AdLIoTLog can detect adversaries because when adversaries are present the model gets duped by the collaborative events and therefore predicts the next event with a biased event rather than a benign event. We conclude that AI can provision ubiquitous learning for the new generation of Internet of Things.
Rajarshi Roy Chowdhury, Sandhya Aneja, Nagender Aneja, and Pg Emeroylariffion Abas
Data in Brief, eISSN: 23523409, Published: August 2021
Elsevier BV
With the growth of wireless network technology-based devices, identifying the communication behaviour of wireless connectivity enabled devices, e.g. Internet of Things (IoT) devices, is one of the vital aspects, in managing and securing IoT networks. Initially, devices use frames to connect to the access point on the local area network and then, use packets of typical communication protocols through the access point to communicate over the Internet. Toward this goal, network packet and IEEE 802.11 media access control (MAC) frame analysis may assist in managing IoT networks efficiently, and allow investigation of inclusive behaviour of IoT devices. This paper presents network traffic traces data of D-Link IoT devices from packet and frame levels. Data collection experiment has been conducted in the Network Systems and Signal Processing (NSSP) laboratory at Universiti Brunei Darussalam (UBD). All the required devices, such as IoT devices, workstation, smartphone, laptop, USB Ethernet adapter, and USB WiFi adapter, have been configured accordingly, to capture and store network traffic traces of the 14 IoT devices in the laboratory. These IoT devices were from the same manufacture (D-Link) with different types, such as camera, home-hub, door-window sensor, and smart-plug.
Nagender Aneja and Sapna Gambhir
Wireless Personal Communications, ISSN: 09296212, eISSN: 1572834X, Volume: 117, Pages: 1735-1753, Published: April 2021
Springer Science and Business Media LLC
Ad-hoc Social Networks are formed by groups of nodes, designating a similarity of interests. The network establishes a two-layer hierarchical structure that comprises communication within-group and joining with other groups. This paper presents survey and future directions in four areas of establishing ad-hoc social network using mobile ad-hoc social network (MANET) that includes architecture or implementation features, Profile Management of users, Similarity Metric, and Routing Protocols. The survey presents the need to provide social applications over MANET, optimizing profile matching algorithms of users, and context aware routing protocols. Future directions include multi-hop social network applications that can be useful for users even in airplane mode and notifying over MANET when a user of profile with similar interest is nearby.
Nur Umairah Ali Hazis, Nagender Aneja, Rajan Rajabalaya, and Sheba Rani David
Recent Advances in Drug Delivery and Formulation, ISSN: 26673878, eISSN: 26673886, Pages: 59-74, Published: 2021
Bentham Science Publishers Ltd.
Background: The application of nanotechnology has been considered a powerful platform in improving the current situation in drug delivery and cancer therapy, especially in targeting the desired site of action. Objective: The main objective of the patent review is to survey and review patents from the past ten years that are related to the two particular areas of nanomedicines. Methods: The patents related to the nanoparticle-based inventions utilized in drug delivery and cancer treatment from 2010 onwards were browsed in databases like USPTO, WIPO, Google Patents, and Free Patents Online. After conducting numerous screening processes, a total of 40 patents were included in the patent analysis. See the PRISMA checklist 2020 checklist. Results: Amongst the selected patents, an overview of various types of nanoparticles is presented in this paper, including polymeric, metallic, silica, lipid-based nanoparticles, quantum dots, carbon nanotubes, and albumin-based nanomedicines. Conclusion: Nanomedicines advantages include improvements in terms of drug delivery, bioavailability, solubility, penetration, and stability of drugs. It is concluded that the utilization of nanoparticles in medicines is essential in the pursuit of better clinical practice.
Nagender Aneja and Sandhya Aneja
Lecture Notes in Networks and Systems, ISSN: 23673370, eISSN: 23673389, Volume: 175, Pages: 53-64, Published: 2021
Springer International Publishing
Fake news is intentionally written to influence individuals and their belief system. Detection of fake news has become extremely important since it is impacting society and politics negatively. Most existing works have used supervised learning but given importance to the words used in the dataset. The approach may work well when the dataset is huge and covers a wide domain. However, getting the labeled dataset of fake news is a challenging problem. Additionally, the algorithms are trained after the news has already been disseminated. In contrast, this research gives importance to content-based prediction based on language statistical features. Our assumption of using language statistical features is relevant since the fake news is written to impact human psychology. A pattern in the language features can predict whether the news is fake or not. We extracted 43 features that include Parts of Speech and Sentiment Analysis and shown that AdaBoost gave accuracy and F-score close to 1 when using 43 features. Results also show that the top ten features instead of all 43 features give the accuracy of 0.85 and F-Score of 0.87.
Rajarshi Roy Chowdhury, Sandhya Aneja, Nagender Aneja, and Emeroylariffion Abas
ACM International Conference Proceeding Series, Pages: 79-89, Published: 22 August 2020
ACM
Device identification is the process of identifying a device on Internet without using its assigned network or other credentials. The sharp rise of usage in Internet of Things (IoT) devices has imposed new challenges in device identification due to a wide variety of devices, protocols and control interfaces. In a network, conventional IoT devices identify each other by utilizing IP or MAC addresses, which are prone to spoofing. Moreover, IoT devices are low power devices with minimal embedded security solution. To mitigate the issue in IoT devices, fingerprint (DFP) for device identification can be used. DFP identifies a device by using implicit identifiers, such as network traffic (or packets), radio signal, which a device used for its communication over the network. These identifiers are closely related to the device hardware and software features. In this paper, we exploit TCP/IP packet header features to create a device fingerprint utilizing device originated network packets. We present a set of three metrics which separate some features from a packet which contribute actively for device identification. To evaluate our approach, we used publicly accessible two datasets. We observed the accuracy of device genre classification 99.37% and 83.35% of accuracy in the identification of an individual device from IoT Sentinel dataset. However, using UNSW dataset device type identification accuracy reached up to 97.78%.
Sandhya Aneja, Siti Nur Afikah Bte Abdul Mazid, and Nagender Aneja
ACM International Conference Proceeding Series, Pages: 74-79, Published: 11 July 2020
ACM
Machine translation has many applications such as news translation, email translation, official letter translation etc. Commercial translators, e.g. Google Translation lags in regional vocabulary and are unable to learn the bilingual text in the source and target languages within the input. In this paper, a regional vocabulary-based application-oriented Neural Machine Translation (NMT) model is proposed over the data set of emails used at the University for communication over a period of three years. A state-of-the-art Sequence-to-Sequence Neural Network for ML → EN (Malay to English) and EN → ML (English to Malay) translations is compared with Google Translate using Gated Recurrent Unit Recurrent Neural Network machine translation model with attention decoder. The low BLEU score of Google Translation in comparison to our model indicates that the application based regional models are better. The low BLEU score of English to Malay of our model and Google Translation indicates that the Malay Language has complex language features corresponding to English.
Nagender Aneja and Sandhya Aneja
1st IEEE International Conference on Advances in Information Technology, ICAIT 2019 - Proceedings, Pages: 293-296, Published: July 2019
IEEE
This paper presents an analysis of pre-trained models to recognize handwritten Devanagari alphabets using transfer learning for Deep Convolution Neural Network(DCNN). This research implements AlexNet, DenseNet, Vgg, and Inception ConvNet as a fixed feature extractor. We implemented 15 epochs for each of AlexNet, DenseNet 121, DenseNet 201, Vgg 11, Vgg 16, Vgg 19, and Inception V3.Results show that Inception V3 performs better in terms of accuracy achieving 99% accuracy with average epoch time 16.3 minutes while AlexNet performs fastest with 2.2 minutes per epoch and achieving 98%accuracy.
Sandhya Aneja, Nagender Aneja, and Md Shohidul Islam
Proceedings - 2018 IEEE International Conference on Internet of Things and Intelligence System, IOTAIS 2018, Pages: 174-179, Published: 3 January 2019
IEEE
Device Fingerprinting (DFP) is the identification of a device without using its network or other assigned identities including IP address, Medium Access Control (MAC) address, or International Mobile Equipment Identity (IMEI) number. DFP identifies a device using information from the packets which the device uses to communicate over the network. Packets are received at a router and processed to extract the information. In this paper, we worked on the DFP using Inter Arrival Time (IAT). IAT is the time interval between the two consecutive packets received. This has been observed that the IAT is unique for a device because of different hardware and the software used for the device. The existing work on the DFP uses the statistical techniques to analyze the IAT and to further generate the information using which a device can be identified uniquely. This work presents a novel idea of DFP by plotting graphs of IAT for packets with each graph plotting 100 IATs and subsequently processing the resulting graphs for the identification of the device. This approach improves the efficiency to identify a device DFP due to achieved benchmark of the deep learning libraries in the image processing. We configured Raspberry Pi to work as a router and installed our packet sniffer application on the Raspberry Pi. The packet sniffer application captured the packet information from the connected devices in a log file. We connected two Apple devices iPad4 and iPhone 7 Plus to the router and created IAT graphs for these two devices. We used Convolution Neural Network (CNN) to identify the devices and observed the accuracy of 86.7%.
Nagender Aneja and Sapna Gambhir
Mobile Information Systems, ISSN: 1574017X, eISSN: 1875905X, Volume: 2018, Published: 2018
Hindawi Limited
Ad hoc social networks have become popular to support novel applications related to location-based mobile services that are of great importance to users and businesses. Unlike traditional social services using a centralized server to fetch location, ad hoc social network services support infrastructure-less real-time social networking. It allows users to collaborate and share views anytime anywhere. However, current ad hoc social network applications either are not available without rooting the mobile phones or do not filter the nearby users based on common interests without a centralized server. This paper presents an architecture and implementation of social networks on commercially available mobile devices that allow broadcasting name and a limited number of keywords representing users’ interests without any connection in a nearby region to facilitate matching of interests. The broadcasting region creates a digital aura and is limited by the Wi-Fi region that is around 200 meters. The application connects users to form a group based on their profile or interests using the peer-to-peer communication mode without using any centralized networking or profile-matching infrastructure. The peer-to-peer group can be used for private communication when the network is not available.
Sapna Gambhir, Nagender Aneja, and Liyanage Chandratilake De Silva
Wireless Personal Communications, ISSN: 09296212, eISSN: 1572834X, Pages: 3519-3529, Published: 1 December 2017
Springer Science and Business Media LLC
Computing Profile Similarity is a fundamental requirement in the area of Social Networks to suggest similar social connections that have high chance of being accepted as actual connection. Representing and measuring similarity appropriately is a pursuit of many researchers. Cosine similarity is a widely used metric that is simple and effective. This paper provides analysis of cosine similarity for social profiles and proposes a novel method to compute Piecewise Maximal Similarity between profiles. The proposed metric is 6% more effective to measure similarity than cosine similarity based on computations on real data.
Nagender Aneja and Sapna Gambhir
Wireless Personal Communications, ISSN: 09296212, eISSN: 1572834X, Pages: 4161-4182, Published: 1 December 2017
Springer Science and Business Media LLC
Ad-hoc social networks are required to strengthen local communication between people. Mobile ad-hoc social networks have emerged as self-configuring and self-organizing social networks to facilitate interactions among different mobile users without Internet. Contextual routing based on social patterns has been proposed and advantageous for ad-hoc social networks. Social profile aware routing protocol proposed in this paper allows users to use social networking applications using social routing protocol. The protocol has been implemented on network simulator ns-2 and is also available as a patch file for other researchers. Results indicate protocol has low overhead with 64 nodes. Results have been presented for packet delivery ratio, and average end-to-end delay. The need of multi-hop social network was also studied and observed that probability of nodes being connected at mult-hop increases with increment of number of nodes and geographical area.
Sandhya Aneja and Nagender Aneja
NoSQL: Database for Storage and Retrieval of Data in Cloud, Pages: 237-250, Published: 1 January 2017
Chapman and Hall/CRC
Relational database management systems (RDBMSs) have traditionally been used to store and manage data from Internet, Intranet, or Desktop applications in order to serve multiusers systems. RDBMS has also been known to provide flexible services with a wide range of scalability. In traditional RDBMSs, role-based access control (RBAC) models have been implemented in commercial products like Oracle, MySQL, and PostgreSQL and many more with some variations from each other. Privacy is an important factor for data stores in addition to the security. The chapter discusses security of traditional database systems using an example of PostgreSQL database system. It explains RBAC and its variations with an example of PostgreSQL and describes the basic RBAC model in context of MongoDB. The chapter also explains the procedure to create user, roles, and functionalities provided in MongoDB for user authentication and access control. It explores possible modifications proposed for basic RBAC.
Proceedings of the 10th INDIACom; 2016 3rd International Conference on Computing for Sustainable Global Development, INDIACom 2016, Pages: 3450-3454, Published: 27 October 2016
Founder and Developer, http://ResearchID.co