Cenk Ozan

@adu.edu.tr

Civil Engineering Department/Faculty of Engineering
Aydin Adnan Menderes University

RESEARCH INTERESTS

Transportation Engineering
Traffic Engineering
Highway Engineering

7

Scopus Publications

Scopus Publications

  • Investigating acceptable level of travel demand before capacity enhancement for signalized Urban road networks
    Özgür BAŞKAN, Hüseyin CEYLAN, and Cenk OZAN

    Teknik Dergi
    Increasing travel demand in urban areas triggers traffic congestion and increases delay in road networks. In this context, local authorities that are responsible for traffic operations seek to strike a balance between traffic volume and capacity to reduce total travel time on road networks. Since intersections are the most critical components of road networks in terms of safety and operational issues, adjusting intersection signal timings becomes an effective method for authorities. When this tool remains incapable of overcoming traffic congestions, authorities take expensive measures such as increasing link capacities, lane additions or applying grade-separated junctions. However, it may be more useful to handle road networks as a whole by investigating the effects of optimizing signal timings of all intersections in the network. Therefore, it would be useful to investigate the right time for physical improvements on the road network to avoid premature investments considering limited resources of local authorities. In this study, effects of increasing travel demand on Total Travel Cost (TTC) is investigated by developing a bi-level programming model, called TRAvel COst Minimizer (TRACOM), in which the upper level minimizes the TTC subject to the stochastic user equilibrium link flows determined at the lower level. The TRACOM is applied to Allsop and Charlesworths’ network for different origin-destination demand matrix multipliers. Results revealed that TTC values showed an approximate linear increase while the travel demand is increased up to 16%. After this value, TTC showed a sudden spike although the travel demand was linearly increased that means optimizing signal timings must be supported by applying psychical improvements.

  • A Simultaneous Solution for Reserve Capacity Maximization and Delay Minimization Problems in Signalized Road Networks
    Ozgur Baskan, Huseyin Ceylan, and Cenk Ozan

    Hindawi Limited
    In this study, we present a bilevel programming model in which upper level is defined as a biobjective problem and the lower level is considered as a stochastic user equilibrium assignment problem. It is clear that the biobjective problem has two objectives: the first maximizes the reserve capacity whereas the second minimizes performance index of a road network. We use a weighted-sum method to determine the Pareto optimal solutions of the biobjective problem by applying normalization approach for making the objective functions dimensionless. Following, a differential evolution based heuristic solution algorithm is introduced to overcome the problem presented by use of biobjective bilevel programming model. The first numerical test is conducted on two-junction network in order to represent the effect of the weighting on the solution of combined reserve capacity maximization and delay minimization problem. Allsop & Charlesworth’s network, which is a widely preferred road network in the literature, is selected for the second numerical application in order to present the applicability of the proposed model on a medium-sized signalized road network. Results support authorities who should usually make a choice between two conflicting issues, namely, reserve capacity maximization and delay minimization.

  • Improving the performance of the bilevel solution for the continuous network design problem
    Ozgur Baskan, Cenk Ozan, Mauro Dell’Orco, and Mario Marinelli

    Faculty of Transport and Traffic Sciences
    For a long time, many researchers have investigated the continuous network design problem (CNDP) to distribute equitably additional capacity between selected links in a road network, to overcome traffic congestion in urban roads. In addition, CNDP plays a critical role for local authorities in tackling traffic congestion with a limited budget. Due to the mutual interaction between road users and local authorities, CNDP is usually solved using the bilevel modeling technique. The upper level seeks to find the optimal capacity enhancements of selected links, while the lower level is used to solve the traffic assignment problem. In this study, we introduced the enhanced differential evolution algorithm based on multiple improvement strategies (EDEMIS) for solving CNDP. We applied EDEMIS first to a hypothetical network to show its ability in finding the global optimum solution, at least in a small network. Then, we used a 16-link network to reveal the capability of EDEMIS especially in the case of high demand. Finally, we used the Sioux Falls city network to evaluate the performance of EDEMIS according to other solution methods on a medium-sized road network. The results showed that EDEMIS produces better solutions than other considered algorithms, encouraging transportation planners to use it in large-scale road networks.

  • A modified reinforcement learning algorithm for solving coordinated signalized networks
    Cenk Ozan, Ozgur Baskan, Soner Haldenbilen, and Halim Ceylan

    Elsevier BV


  • Determining on-street parking places in urban road networks using meta-heuristic harmony search algorithm
    Huseyin Ceylan, Ozgur Baskan, Cenk Ozan, and Gorkem Gulhan

    Springer International Publishing