Cristina Satriano

@unict.it

Ass Professor of Physical Chemistry
University of Catania



              

https://researchid.co/csatriano

RESEARCH INTERESTS

Physical Chemistry of BioInterfaces; Nanomedicine; Theranostics; nanomaterials

139

Scopus Publications

Scopus Publications

  • The Hybrid Nano-Biointerface between Proteins/Peptides and Two-Dimensional Nanomaterials
    Giuseppe Forte, Diego La Mendola, and Cristina Satriano

    MDPI AG
    In typical protein–nanoparticle surface interactions, the biomolecule surface binding and consequent conformational changes are intermingled with each other and are pivotal to the multiple functional properties of the resulting hybrid bioengineered nanomaterial. In this review, we focus on the peculiar properties of the layer formed when biomolecules, especially proteins and peptides, face two-dimensional (2D) nanomaterials, to provide an overview of the state-of-the-art knowledge and the current challenges concerning the biomolecule coronas and, in general, the 2D nano-biointerface established when peptides and proteins interact with the nanosheet surface. Specifically, this review includes both experimental and simulation studies, including some recent machine learning results of a wide range of nanomaterial and peptide/protein systems.

  • Cisplatin binding to angiogenin protein: new molecular pathways and targets for the drug's anticancer activity
    Giarita Ferraro, Vanessa Sanfilippo, Lorenzo Chiaverini, Cristina Satriano, Tiziano Marzo, Antonello Merlino, and Diego La Mendola

    Royal Society of Chemistry (RSC)
    The interaction between cisplatin and angiogenin, a protein strongly expressed in many types of cancer and a potent angiogenic factor, has been investigated.

  • Green Nanoformulations of Polyvinylpyrrolidone-Capped Metal Nanoparticles: A Study at the Hybrid Interface with Biomimetic Cell Membranes and In Vitro Cell Models
    Alice Foti, Luana Calì, Salvatore Petralia, and Cristina Satriano

    MDPI AG
    Noble metal nanoparticles (NP) with intrinsic antiangiogenic, antibacterial, and anti-inflammatory properties have great potential as potent chemotherapeutics, due to their unique features, including plasmonic properties for application in photothermal therapy, and their capability to slow down the migration/invasion speed of cancer cells and then suppress metastasis. In this work, gold (Au), silver (Ag), and palladium (Pd) NP were synthesized by a green redox chemistry method with the reduction of the metal salt precursor with glucose in the presence of polyvinylpyrrolidone (PVP) as stabilizing and capping agent. The physicochemical properties of the PVP-capped NP were investigated by UV-visible (UV-vis) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopies, dynamic light scattering (DLS), and atomic force microscopy (AFM), to scrutinize the optical features and the interface between the metal surface and the capping polymer, the hydrodynamic size, and the morphology, respectively. Biophysical studies with model cell membranes were carried out by using laser scanning confocal microscopy (LSM) with fluorescence recovery after photobleaching (FRAP) and fluorescence resonance energy transfer (FRET) techniques. To this purpose, artificial cell membranes of supported lipid bilayers (SLBs) made with 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (POPC) dye-labeled with 7-nitro-2-1,3-benzoxadiazol-4-yl (NBD, FRET donor) and/or lissamine rhodamine B sulfonyl (Rh, FRET acceptor) were prepared. Proof-of-work in vitro cellular experiments were carried out with prostate cancer cells (PC-3 line) in terms of cytotoxicity, cell migration (wound scratch assay), NP cellular uptake, and cytoskeleton actin perturbation.

  • Bioinspired Nanoplatforms Based on Graphene Oxide and Neurotrophin-Mimicking Peptides
    Luigi Redigolo, Vanessa Sanfilippo, Diego La Mendola, Giuseppe Forte, and Cristina Satriano

    MDPI AG
    Neurotrophins (NTs), which are crucial for the functioning of the nervous system, are also known to regulate vascularization. Graphene-based materials may drive neural growth and differentiation, and, thus, have great potential in regenerative medicine. In this work, we scrutinized the nano–biointerface between the cell membrane and hybrids made of neurotrophin-mimicking peptides and graphene oxide (GO) assemblies (pep−GO), to exploit their potential in theranostics (i.e., therapy and imaging/diagnostics) for targeting neurodegenerative diseases (ND) as well as angiogenesis. The pep−GO systems were assembled via spontaneous physisorption onto GO nanosheets of the peptide sequences BDNF(1-12), NT3(1-13), and NGF(1-14), mimicking the brain-derived neurotrophic factor (BDNF), the neurotrophin 3 (NT3), and the nerve growth factor (NGF), respectively. The interaction of pep−GO nanoplatforms at the biointerface with artificial cell membranes was scrutinized both in 3D and 2D by utilizing model phospholipids self-assembled as small unilamellar vesicles (SUVs) or planar-supported lipid bilayers (SLBs), respectively. The experimental studies were paralleled via molecular dynamics (MD) computational analyses. Proof-of-work in vitro cellular experiments with undifferentiated neuroblastoma (SH-SY5Y), neuron-like, differentiated neuroblastoma (dSH-SY5Y), and human umbilical vein endothelial cells (HUVECs) were carried out to shed light on the capability of the pep−GO nanoplatforms to stimulate the neurite outgrowth as well as tubulogenesis and cell migration.

  • Different In Silico Approaches Using Heterocyclic Derivatives against the Binding between Different Lineages of SARS-CoV-2 and ACE2
    Federica Sipala, Gianfranco Cavallaro, Giuseppe Forte, Cristina Satriano, Alessandro Giuffrida, Aurore Fraix, Angelo Spadaro, Salvatore Petralia, Carmela Bonaccorso, Cosimo Gianluca Fortuna,et al.

    MDPI AG
    Over the last few years, the study of the SARS-CoV-2 spike protein and its mutations has become essential in understanding how it interacts with human host receptors. Since the crystallized structure of the spike protein bound to the angiotensin-converting enzyme 2 (ACE2) receptor was released (PDB code 6M0J), in silico studies have been performed to understand the interactions between these two proteins. Specifically, in this study, heterocyclic compounds with different chemical characteristics were examined to highlight the possibility of interaction with the spike protein and the disruption of the interaction between ACE2 and the spike protein. Our results showed that these compounds interacted with the spike protein and interposed in the interaction zone with ACE2. Although further studies are needed, this work points to these heterocyclic push–pull compounds as possible agents capable of interacting with the spike protein, with the potential for the inhibition of spike protein–ACE2 binding.

  • Pd-Based Hybrid Nanoparticles As Multimodal Theranostic Nanomedicine
    Alberto Bellissima, Lorena M. Cucci, Vanessa Sanfilippo, Angela De Bonis, Roberto Fiorenza, Salvatore Scirè, Tiziano Marzo, Mirko Severi, Diego La Mendola, Valentina Notarstefano,et al.

    American Chemical Society (ACS)
    A nanodelivery system based on palladium nanoparticles (PdNP) and cisplatin (CisPt) was developed by physisorption of the drug onto the PdNP synthesized via a green redox process, using d-glucose and polyvinylpyrrolidone (PVP) as reducing and stabilizing/capping agents, respectively. UV–vis analysis and H2-evolution measurements were carried out to prove the nanoparticles’ capability to act as bimodal theranostic nanomedicine, i.e., having both plasmonic and photocatalytic properties. XPS, XRD, and TEM allowed light to be shed on the chemical composition and morphology of the PdNP. The analysis of the UV–visible spectra evidenced plasmonic peak changes for the hybrid nanoparticle-drug assembly (Pd@CisPt), which pointed to a significant interaction of CisPt with the NP surface. The drug loading was quantitatively estimated by ICP-OES measurements, while DLS and AFM confirmed the strong association of the drug with the nanoparticle surface. The test of SOD-like activity in a cell-free environment proved the maintenance of the antioxidant capability of PdNP also in the Pd@CisPt systems. Finally, Pd@CisPt tested in prostate cancer cells (PC-3 line) unveiled the antitumoral action of the developed nanomedicine, related to reactive oxygen species (ROS) generation, with a condition of protein misfolding/unfolding and DNA damage, as evidenced by cytotoxicity and MitoSOX assays, as well as Raman microspectroscopy, respectively. Cell imaging by confocal microscopy evidenced cellular uptake of the nanoparticles, as well as dynamic processes of copper ion accumulation at the level of subcellular compartments. Finally, cell migration studies upon treatment with Pd@CisPt evidenced a tunable response between the inhibitory effect of CisPt and the enhanced rate of cell migration for the metal NP alone, which pointed out the promising potential of the developed theranostic nanomedicine in tissue regeneration.

  • GxxxG Motif Stabilize Ion-Channel like Pores through C<inf>α</inf>―H···O Interaction in Aβ (1-40)
    Carola Rando, Giuseppe Grasso, Dibakar Sarkar, Michele Francesco Maria Sciacca, Lorena Maria Cucci, Alessia Cosentino, Giuseppe Forte, Martina Pannuzzo, Cristina Satriano, Anirban Bhunia,et al.

    MDPI AG
    Aβ (1-40) can transfer from the aqueous phase to the bilayer and thus form stable ion-channel-like pores where the protein has alpha-helical conformation. The stability of the pores is due to the presence of the GXXXG motif. It has been reported that these ion-channel-like pores are stabilized by a Cα―H···O hydrogen bond that is established between a glycine of the GXXXG sequence of an alpha-helix and another amino acid of a vicinal alpha-helix. However, conflicting data are reported in the literature. Some authors have suggested that hydrogen bonding does not have a stabilizing function. Here we synthesized pentapeptides having a GXXXG motif to explore its role in pore stability. We used molecular dynamics simulations, quantum mechanics, and experimental biophysical techniques to determine whether hydrogen bonding was formed and had a stabilizing function in ion-channel-like structures. Starting from our previous molecular dynamics data, molecular quantum mechanics simulations, and ATR data showed that a stable ion-channel-like pore formed and a band centered at 2910 cm−1 was attributed to the interaction between Gly 7 of an alpha-helix and Asp 23 of a vicinal alpha-helix.

  • Green Light-Triggerable Chemo-Photothermal Activity of Cytarabine-Loaded Polymer Carbon Dots: Mechanism and Preliminary in Vitro Evaluation
    Grazia M. L. Consoli, Maria Laura Giuffrida, Stefania Zimbone, Loredana Ferreri, Ludovica Maugeri, Michele Palmieri, Cristina Satriano, Giuseppe Forte, and Salvatore Petralia

    American Chemical Society (ACS)
    Carbon-based nanostructures are attracting a lot of attention because of their very low toxicity, excellent visible light-triggered optical and photothermal properties, and intriguing applications. Currently, the development of multifunctional carbon-based nanostructures for a synergistic chemo-photothermal approach is a challenging topic for the advancement of cancer treatment. Here, we report an unprecedented example of photoresponsive carbon-based polymer dots (CPDs-PNM) obtained by a one-pot thermal process from poly(N-isopropylacrylamide) (PNIPAM) without using organic solvent and additional reagents. The CPDs-PNM nanostructures were characterized by spectroscopic techniques, transmission electron microscopy, and atomic force microscopy. The CPDs-PNM exhibited high photothermal conversion efficiency, lower critical solution temperature (LCST) behavior, and good cytarabine (arabinosyl cytosine, AraC) loading capacity (62.3%). The formation of a CPDs-PNM/AraC adduct and photothermal-controlled drug release, triggered by green light excitation, were demonstrated by spectroscopic techniques, and the drug-polymer interaction and drug release mechanism were well supported by modeling simulation calculations. The cellular uptake of empty and AraC-loaded CPDs-PNM was imaged by confocal laser scanning microscopy. In vitro experiments evidenced that CPDs-PNM did not affect the viability of neuroblastoma cells, while the CPDs-PNM/AraC adduct under light irradiation exhibited significantly higher toxicity than AraC alone by a combined chemo-photothermal effect.

  • Peptide- and Protein-based Nanomaterials for Theranostics
    Pascal Tomasella, Lorena Maria Cucci, Vanessa Sanfilippo, and Cristina Satriano

    WORLD SCIENTIFIC

  • Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform
    Adrien Chauvin, Walter Puglisi, Damien Thiry, Cristina Satriano, Rony Snyders, and Carla Bittencourt

    Beilstein Institut
    Nanostructured noble metal thin films are highly studied for their interesting plasmonic properties. The latter can be effectively used for the detection of small and highly diluted molecules by the surface-enhanced Raman scattering (SERS) effect. Regardless of impressive detection limits achieved, synthesis complexity and the high cost of gold restrict its use in devices. Here, we report on a novel two-step approach that combines the deposition of a silver–aluminum thin film with dealloying to design and fabricate efficient SERS platforms. The magnetron sputtering technique was used for the deposition of the alloy thin film to be dealloyed. After dealloying, the resulting silver nanoporous structures revealed two degrees of porosity: macroporosity, associated to the initial alloy morphology, and nanoporosity, related to the dealloying step. The resulting nanoporous columnar structure was finely optimized by tuning deposition (i.e., the alloy chemical composition) and dealloying (i.e., dealloying media) parameters to reach the best SERS properties. These are reported for samples dealloyed in HCl and with 30 atom % of silver at the initial state with a detection limit down to 10−10 mol·L−1 for a solution of rhodamine B.

  • A Graphene Oxide-Angiogenin Theranostic Nanoplatform for the Therapeutic Targeting of Angiogenic Processes: The Effect of Copper-Supplemented Medium
    Lorenzo Riela, Lorena Maria Cucci, Örjan Hansson, Tiziano Marzo, Diego La Mendola, and Cristina Satriano

    MDPI AG
    Graphene oxide (GO) nanosheets with different content in the defective carbon species bound to oxygen sp3 were functionalized with the angiogenin (ANG) protein, to create a novel nanomedicine for modulating angiogenic processes in cancer therapies. The GO@ANG nanocomposite was scrutinized utilizing UV-visible and fluorescence spectroscopies. GO exhibits pro- or antiangiogenic effects, mostly attributed to the disturbance of ROS concentration, depending both on the total concentration (i.e., &gt;100 ng/mL) as well as on the number of carbon species oxidized, that is, the C/O ratio. ANG is considered one of the most effective angiogenic factors that plays a vital role in the angiogenic process, often in a synergic role with copper ions. Based on these starting hypotheses, the GO@ANG nanotoxicity was assessed with the MTT colorimetric assay, both in the absence and in the presence of copper ions, by in vitro cellular experiments on human prostatic cancer cells (PC-3 line). Laser confocal microscopy (LSM) cell imaging evidenced an enhanced internationalization of GO@ANG than bare GO nanosheets, as well as significant changes in cell cytoskeleton organization and mitochondrial staining compared to the cell treatments with free ANG.

  • A Multifunctional Conjugated Polymer Developed as an Efficient System for Differentiation of SH-SY5Y Tumour Cells
    Angelo Nicosia, Giuseppe La Perna, Lorena Maria Cucci, Cristina Satriano, and Placido Mineo

    MDPI AG
    Polymer-based systems have been demonstrated in novel therapeutic and diagnostic (theranostic) treatments for cancer and other diseases. Polymers provide a useful scaffold to develop multifunctional nanosystems that combine various beneficial properties such as drug delivery, bioavailability, and photosensitivity. For example, to provide passive tumour targeting of small drug molecules, polymers have been used to modify and functionalise the surface of water-insoluble drugs. This approach also allows the reduction of adverse side effects, such as retinoids. However, multifunctional polymer conjugates containing several moieties with distinct features have not been investigated in depth. This report describes the development of a one-pot approach to produce a novel multifunctional polymer conjugate. As a proof of concept, we synthesised polyvinyl alcohol (PVA) covalently conjugated with rhodamine B (a tracking agent), folic acid (a targeting agent), and all-trans retinoic acid (ATRA, a drug). The obtained polymer (PVA@RhodFR) was characterised by MALDI-TOF mass spectrometry, gel permeation chromatography, thermal analysis, dynamic light-scattering, NMR, UV-Vis, and fluorescence spectroscopy. Finally, to evaluate the efficiency of the multifunctional polymer conjugate, cellular differentiation treatments were performed on the neuroblastoma SH-SY5Y cell line. In comparison with standard ATRA-based conditions used to promote cell differentiation, the results revealed the high capability of the new PVA@RhodFR to induce neuroblastoma cells differentiation, even with a short incubation time and low ATRA concentration.

  • A nanosized photothermal responsive core-shell carbonized polymer dots based on poly(N-isopropylacrylamide) for light-triggered drug release
    Giuseppe Forte, Giuseppe Consiglio, Cristina Satriano, Ludovica Maugeri, and Salvatore Petralia

    Elsevier BV

  • Correction to: Analysis of common methodological flaws in the highest cited e-cigarette epidemiology research (Internal and Emergency Medicine, (2022), 17, 3, (887-909), 10.1007/s11739-022-02967-1)
    Cother Hajat, Emma Stein, Arielle Selya, Riccardo Polosa, Salvatore Alaimo, Carmelina Daniela Anfuso, Ignazio Barbagallo, Francesco Basile, Sebastiano Battiato, Brahim Benhamou,et al.

    Springer Science and Business Media LLC

  • Analysis of common methodological flaws in the highest cited e-cigarette epidemiology research
    Cother Hajat, Emma Stein, Arielle Selya, Riccardo Polosa, Salvatore Alaimo, Carmelina Daniela Anfuso, Ignazio Barbagallo, Francesco Basile, Sebastiano Battiato, Brahim Benhamou,et al.

    Springer Science and Business Media LLC
    AbstractThe prevalence of vaping, also known as using e-cigarettes, vapes and vape pens, has prompted a demand for reliable, evidence-based research. However, published literature on the topic of vaping often raises concerns, characterized by serious flaws and a failure to adhere to accepted scientific methodologies. In this narrative review, we analyze popular vaping studies published in medical journals that purport to evaluate the association of vaping and smoking cessation, smoking initiation or health outcomes. We analyzed 24 included studies to identify the questions they claimed to address, stated methods, manner of implementation, discussions, and stated conclusions. After critical appraisal, we noted a multiplicity of flaws in these studies, and identified patterns as to the nature of such flaws. Many studies lacked a clear hypothesis statement: to the extent that a hypothesis could be inferred, the methods were not tailored to address the question of interest. Moreover, main outcome measures were poorly identified, and data analysis was further complicated by failure to control for confounding factors. The body of literature on “gateway” theory for the initiation of smoking was particularly unreliable. Overall, the results and discussion contained numerous unreliable assertions due to poor methods, including data collection that lacked relevance, and assertions that were unfounded. Many researchers claimed to find a causal association while not supporting such findings with meaningful data: the discussions and conclusions of such studies were, therefore, misleading. Herein, we identify the common flaws in the study design, methodology, and implementation found in published vaping studies. We present our summary recommendations for future vaping research. Our aim is to prompt future researchers to adhere to scientific methods to produce more reliable findings and conclusions in the field of vaping research.

  • A novel facile one-pot synthesis of photothermally responsive carbon polymer dots as promising drug nanocarriers
    Grazia Maria Letizia Consoli, Maria Laura Giuffrida, Cristina Satriano, Teresa Musumeci, Giuseppe Forte, and Salvatore Petralia

    Royal Society of Chemistry (RSC)
    A luminescent and photothermic carbon-based nanomaterial composed of a carbonized polymer core and polymer cross-linked chains: a promising nanocarrier for effective thermo-/photo-induced drug release activity.

  • Oxaliplatin inhibits angiogenin proliferative and cell migration effects in prostate cancer cells
    Tiziano Marzo, Giarita Ferraro, Lorena Maria Cucci, Alessandro Pratesi, Örjan Hansson, Cristina Satriano, Antonello Merlino, and Diego La Mendola

    Elsevier BV
    Angiogenin (Ang) is a potent angiogenic protein that is overexpressed in many types of cancer at concentration values correlated to the tumor aggressiveness. Here, by means of an integrated multi-technique approach based on crystallographic, spectrometric and spectroscopic analyses, we demonstrate that the anti-cancer drug oxaliplatin efficiently binds angiogenin. Microscopy cellular studies, carried out on the prostate cancer cell (PC-3) line , show that oxaliplatin inhibits the angiogenin prompting effect on cell proliferation and migration, which are typical features of angiogenesis process. Overall, our findings point to angiogenin as a possible target of oxaliplatin, thus suggesting a potential novel mechanism for the antineoplastic activity of this platinum drug and opening the avenue to novel approaches in the combined anti-cancer anti-angiogenic therapy.

  • Enhanced plasmonic processes in amino-rich plasma polymer films for applications at the biointerface
    Vittorio Ferrara, Cédric Vandenabeele, Damien Cossement, Rony Snyders, and Cristina Satriano

    Royal Society of Chemistry (RSC)
    A novel planar biosensor coupling the plasmonic properties of nanogold with the mechanical and bioadhesive features of primary amine-based plasma polymer films.

  • Critical appraisal of the European Union Scientific Committee on Health, Environmental and Emerging Risks (SCHEER) Preliminary Opinion on electronic cigarettes
    Renée O’Leary, , Riccardo Polosa, and Giovanni Li Volti

    Springer Science and Business Media LLC
    Abstract Background In preparation for the 2021 revision of the European Union Tobacco Products Directive, the Scientific Committee on Health, Environmental and Emerging Risks (SCHEER) has posted its Preliminary Opinion on Electronic Cigarettes. They concluded that e-cigarettes only achieve a sub-optimal level of protection of human health. In this paper, we provide evidence that the Opinion’s conclusions are not adequately backed up by scientific evidence and did not discuss the potential health benefits of using alternative combustion-free nicotine-containing products as substitute for tobacco cigarettes. Methods Searches for articles were conducted in PubMed and by citation chasing in Google Scholar. Articles were also retrieved with a review of references in major publications. Primary data from World Health Organization surveys, the conclusions of reviews, and peer-reviewed non-industry studies were cited to address errors and omissions identified in the Opinion. Results The Opinion omitted reporting on the individual and population health benefits of the substitution of e-cigarettes (ENDS) for cigarette smoking. Alternative hypotheses to the gateway theory were not evaluated. Its assessment of cardiovascular risk is contradicted by numerous reviews. It cites ever-use data that do not represent current patterns of use. It did not report non-nicotine use. It presented erroneous statements on trends in ENDS prevalence. It over-emphasized the role of flavours in youth ENDS initiation. It did not discuss cessation in sufficient length. Conclusions For the delivery of a robust and comprehensive final report, the members of the Working Group of the Scientific Committee on Health, Environmental and Emerging Risks will need to consider (1) the potential health benefits of ENDS substitution for cigarette smoking, (2) alternative hypotheses and contradictory studies on the gateway effect, (3) its assessment of cardiovascular risk, (4) the measurements of frequency of use, (5) non-nicotine use, (6) the role of flavours, and (7) a fulsome discussion of cessation.

  • Angiogenin and copper crossing in wound healing
    Lorena Maria Cucci, Cristina Satriano, Tiziano Marzo, and Diego La Mendola

    MDPI AG
    Angiogenesis plays a key role in the wound healing process, involving the migration, growth, and differentiation of endothelial cells. Angiogenesis is controlled by a strict balance of different factors, and among these, the angiogenin protein plays a relevant role. Angiogenin is a secreted protein member of the ribonuclease superfamily that is taken up by cells and translocated to the nucleus when the process of blood vessel formation has to be promoted. However, the chemical signaling that activates the protein, normally present in the plasma, and the transport pathways through which the protein enters the cell are still largely unclear. Copper is also an angiogenic factor that regulates angiogenin expression and participates in the activation of common signaling pathways. The interaction between angiogenin and copper could be a relevant mechanism in regulating the formation of new blood vessel pathways and paving the way to the development of new drugs for chronic non-healing wounds.

  • Mpeg-plga nanoparticles labelled with loaded or conjugated rhodamine-b for potential nose-to-brain delivery
    Emanuela Fabiola Craparo, Teresa Musumeci, Angela Bonaccorso, Rosalia Pellitteri, Alessia Romeo, Irina Naletova, Lorena Maria Cucci, Gennara Cavallaro, and Cristina Satriano

    MDPI AG
    Nowdays, neurodegenerative diseases represent a great challenge from both the therapeutic and diagnostic points of view. Indeed, several physiological barriers of the body, including the blood brain barrier (BBB), nasal, dermal, and intestinal barriers, interpose between the development of new drugs and their effective administration to reach the target organ or target cells at therapeutic concentrations. Currently, the nose-to-brain delivery with nanoformulations specifically designed for intranasal administration is a strategy widely investigated with the goal to reach the brain while bypassing the BBB. To produce nanosystems suitable to study both in vitro and/or in vivo cells trafficking for potential nose-to-brain delivery route, we prepared and characterized two types of fluorescent poly(ethylene glycol)-methyl-ether-block-poly(lactide-co-glycolide) (PLGA–PEG) nanoparticles (PNPs), i.e., Rhodamine B (RhB) dye loaded- and grafted- PNPs, respectively. The latter were produced by blending into the PLGA–PEG matrix a RhB-labeled polyaspartamide/polylactide graft copolymer to ensure a stable fluorescence during the time of analysis. Photon correlation spectroscopy (PCS), UV-visible (UV-vis) spectroscopies, differential scanning calorimetry (DSC), atomic force microscopy (AFM) were used to characterize the RhB-loaded and RhB-grafted PNPs. To assess their potential use for brain targeting, cytotoxicity tests were carried out on olfactory ensheathing cells (OECs) and neuron-like differentiated PC12 cells. Both PNP types showed mean sizes suitable for nose-to-brain delivery (&lt;200 nm, PDI &lt; 0.3) and were not cytotoxic toward OECs in the concentration range tested, while a reduction in the viability on PC12 cells was found when higher concentrations of nanomedicines were used. Both the RhB-labelled NPs are suitable drug carrier models for exploring cellular trafficking in nose-to-brain delivery for short-time or long-term studies.

  • Peptides derived from angiogenin regulate cellular copper uptake
    Giovanni Tabbì, Lorena Maria Cucci, Calogero Pinzino, Alessia Munzone, Tiziano Marzo, Silvia Pizzanelli, Cristina Satriano, Antonio Magrì, and Diego La Mendola

    MDPI AG
    The angiogenin protein (ANG) is one of the most potent endogenous angiogenic factors. In this work we characterized by means of potentiometric, spectroscopic and voltammetric techniques, the copper complex species formed with peptide fragments derived from the N-terminal domain of the protein, encompassing the sequence 1-17 and having free amino, Ang1-17, or acetylated N-terminus group, AcAng1-17, so to explore the role of amino group in metal binding and cellular copper uptake. The obtained data show that amino group is the main copper anchoring site for Ang1-17. The affinity constant values, metal coordination geometry and complexes redox-potentials strongly depend, for both peptides, on the number of copper equivalents added. Confocal laser scanning microscope analysis on neuroblastoma cells showed that in the presence of one equivalent of copper ion, the free amino Ang1-17 increases cellular copper uptake while the acetylated AcAng1-17 strongly decreases the intracellular metal level. The activity of peptides was also compared to that of the protein normally present in the plasma (wtANG) as well as to the recombinant form (rANG) most commonly used in literature experiments. The two protein isoforms bind copper ions but with a different coordination environment. Confocal laser scanning microscope data showed that the wtANG induces a strong increase in intracellular copper compared to control while the rANG decreases the copper signal inside cells. These data demonstrate the relevance of copper complexes’ geometry to modulate peptides’ activity and show that wtANG, normally present in the plasma, can affect cellular copper uptake.

  • β-amyloid monomers drive up neuronal aerobic glycolysis in response to energy stressors
    Rosa Santangelo, Maria Laura Giuffrida, Cristina Satriano, Marianna Flora Tomasello, Stefania Zimbone, and Agata Copani

    Impact Journals, LLC
    Research on cerebral glucose metabolism has shown that the aging brain experiences a fall of aerobic glycolysis, and that the age-related loss of aerobic glycolysis may accelerate Alzheimer’s disease pathology. In the healthy brain, aerobic glycolysis, namely the use of glucose outside oxidative phosphorylation, may cover energy demand and increase neuronal resilience to stressors at once. Currently, the drivers of aerobic glycolysis in neurons are unknown. We previously demonstrated that synthetic monomers of β-amyloid protein (Aβ) enhance glucose uptake in neurons, and that endogenous Aβ is required for depolarization-induced glucose uptake in cultured neurons. In this work, we show that cultured cortical neurons increased aerobic glycolysis in response to the inhibition of oxidative phosphorylation by oligomycin or to a kainate pulse. Such an increase was prevented by blocking the endogenous Aβ tone and re-established by the exogenous addition of synthetic Aβ monomers. The activity of mitochondria-bound hexokinase-1 appeared to be necessary for monomers-stimulated aerobic glycolysis during oxidative phosphorylation blockade or kainate excitation. Our data suggest that, through Aβ release, neurons coordinate glucose uptake with aerobic glycolysis in response to metabolic stressors. The implications of this new finding are that the age-related drop in aerobic glycolysis and the susceptibility to Alzheimer’s disease could be linked to factors interfering with release and functions of Aβ monomers.

  • Editorial: Microbial Fabrication of Nanomaterials and Their Applications
    Sougata Ghosh, Karishma R. Pardesi, Cristina Satriano, and Avinash Manjula Basavanna

    Frontiers Media SA
    Department of Microbiology, School of Science, RK University, Rajkot, India, Department of Microbiology, Savitribai Phule Pune University, Pune, India, Department of Chemical Sciences, University of Catania, Catania, Italy, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States, Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Boston, MA, United States

  • A multifunctional nanoplatform made of gold nanoparticles and peptides mimicking the vascular endothelial growth factor
    Patrizia Di Pietro, Stefania Zimbone, Giulia Grasso, Diego La Mendola, Damien Cossement, Rony Snyders, and Cristina Satriano

    MDPI AG
    In this work, nanobiohybrids of plasmonic gold nanoparticles (AuNP, anti-angiogenic) and a peptide mimicking the vascular endothelial growth factor (VEGF, pro-angiogenic) were assembled and scrutinized in terms of physicochemical characterization, including optical properties, surface charge, surface chemical structure and morphology of the bioengineered metal nanoparticles, for their potential application as multifunctional theranostic (i.e., therapy + sensing) nanoplatform (AuNP/VEGF). Specifically, a peptide sequence encompassing the VEGF cellular receptor domain 73–101 (VEGF73–101) and its single point cysteine mutated were immobilized onto AuNP by physi- and chemi-sorption, respectively. The new hybrid systems were characterized by means of a multitechnique approach, including dynamic light scattering (DLS) analyses, zeta potential (ZP), spectroscopic (UV-Vis, FT-IR, XPS), spectrometric (TOF-SIMS) and microscopic (AFM, SEM) techniques. Proof-of-work cellular experiments in human umbilical vein endothelial cells (HUVEC) upon the treatment with AuNP/VEGF samples, demonstrated no toxicity up to 24 h (MTT assay) as well an effective internalization (laser confocal microscopy, LSM).