Fatima Maqoud

@sanita.puglia.it

Functional Gastrointestinal Disorders Research Group
National Institute of Gastroenterology IRCCS "Saverio de Bellis"

27

Scopus Publications

Scopus Publications

  • Anti-Inflammatory Effects of a Novel Acetonitrile–Water Extract of Lens Culinaris against LPS-Induced Damage in Caco-2 Cells
    Fatima Maqoud, Antonella Orlando, Domenico Tricarico, Marina Antonacci, Annamaria Di Turi, Gianluigi Giannelli, and Francesco Russo

    MDPI AG
    Natural compounds like flavonoids preserve intestinal mucosal integrity through their antioxidant, anti-inflammatory, and antimicrobial properties. Additionally, some flavonoids show prebiotic abilities, promoting the growth and activity of beneficial gut bacteria. This study investigates the protective impact of Lens culinaris extract (LE), which is abundant in flavonoids, on intestinal mucosal integrity during LPS-induced inflammation. Using Caco-2 cells as a model for the intestinal barrier, the study found that LE did not affect cell viability but played a cytoprotective role in the presence of LPS. LE improved transepithelial electrical resistance (TEER) and tight junction (TJ) protein levels, which are crucial for barrier integrity. It also countered the upregulation of pro-inflammatory genes TRPA1 and TRPV1 induced by LPS and reduced pro-inflammatory markers like TNF-α, NF-κB, IL-1β, and IL-8. Moreover, LE reversed the LPS-induced upregulation of AQP8 and TLR-4 expression. These findings emphasize the potential of natural compounds like LE to regulate the intestinal barrier and reduce inflammation’s harmful effects on intestinal cells. More research is required to understand their mechanisms and explore therapeutic applications, especially for gastrointestinal inflammatory conditions.

  • The Role of Ion Channels in Functional Gastrointestinal Disorders (FGID): Evidence of Channelopathies and Potential Avenues for Future Research and Therapeutic Targets
    Fatima Maqoud, Domenico Tricarico, Rosanna Mallamaci, Antonella Orlando, and Francesco Russo

    MDPI AG
    Several gastrointestinal (GI) tract abnormalities, including visceral hypersensitivity, motility, and intestinal permeability alterations, have been implicated in functional GI disorders (FGIDs). Ion channels play a crucial role in all the functions mentioned above. Hormones and natural molecules modulate these channels and represent targets of drugs and bacterial toxins. Mutations and abnormal functional expression of ion channel subunits can lead to diseases called channelopathies. These channelopathies in gastroenterology are gaining a strong interest, and the evidence of co-relationships is increasing. In this review, we describe the correlation status between channelopathies and FGIDs. Different findings are available. Among others, mutations in the ABCC7/CFTR gene have been described as a cause of constipation and diarrhea. Mutations of the SCN5A gene are instead associated with irritable bowel syndrome. In contrast, mutations of the TRPV1 and TRPA genes of the transient receptor potential (TRP) superfamily manifest hypersensitivity and visceral pain in sensory nerves. Recently, mice and humans affected by Cantu syndrome (CS), which is associated with the mutations of the KCNJ8 and ABCC9 genes encoding for the Kir6.1 and SUR2 subunits, showed dysfunction of contractility throughout the intestine and death in the mice after the weaning on solid food. The discovery of a correlation between channelopathies and FIGD opens new avenues for discovering new direct drug targets for specific channelopathies, leading to significant implications for diagnosing and treating functional GI diseases.

  • Zoledronic Acid Blocks Overactive Kir6.1/SUR2-Dependent K<inf>ATP</inf> Channels in Skeletal Muscle and Osteoblasts in a Murine Model of Cantú Syndrome
    Rosa Scala, Fatima Maqoud, Conor McClenaghan, Theresa M. Harter, Maria Grazia Perrone, Antonio Scilimati, Colin G. Nichols, and Domenico Tricarico

    MDPI AG
    Cantú syndrome (CS) is caused by the gain of function mutations in the ABCC9 and KCNJ8 genes encoding, respectively, for the sulfonylureas receptor type 2 (SUR2) and the inwardly rectifier potassium channel 6.1 (Kir6.1) of the ATP-sensitive potassium (KATP) channels. CS is a multi-organ condition with a cardiovascular phenotype, neuromuscular symptoms, and skeletal malformations. Glibenclamide has been proposed for use in CS, but even in animals, the drug is incompletely effective against severe mutations, including the Kir6.1wt/V65M. Patch-clamp experiments showed that zoledronic acid (ZOL) fully reduced the whole-cell KATP currents in bone calvaria cells from wild type (WT/WT) and heterozygous Kir6.1wt/V65MCS mice, with IC50 for ZOL block &lt; 1 nM in each case. ZOL fully reduced KATP current in excised patches in skeletal muscle fibers in WT/WT and CS mice, with IC50 of 100 nM in each case. Interestingly, KATP currents in the bone of heterozygous SUR2wt/A478V mice were less sensitive to ZOL inhibition, showing an IC50 of ~500 nM and a slope of ~0.3. In homozygous SUR2A478V/A478V cells, ZOL failed to fully inhibit the KATP currents, causing only ~35% inhibition at 100 μM, but was responsive to glibenclamide. ZOL reduced the KATP currents in Kir6.1wt/VMCS mice in both skeletal muscle and bone cells but was not effective in the SUR2[A478V] mice fibers. These data indicate a subunit specificity of ZOL action that is important for appropriate CS therapies.

  • Molecular Composition and Biological Activity of a Novel Acetonitrile–Water Extract of Lens Culinaris Medik in Murine Native Cells and Cell Lines Exposed to Different Chemotherapeutics Using Mass Spectrometry
    Annamaria Di Turi, Marina Antonacci, Jacopo Raffaele Dibenedetto, Fatima Maqoud, Francesco Leonetti, Gerardo Centoducati, Nicola Colonna, and Domenico Tricarico

    MDPI AG
    We evaluated the effects of a new extract (70% acetonitrile, 2E0217022196DIPFARMTDA) of Lens culinaris Medik (Terre di Altamura SRL, Altamura BA) to prevent cytotoxic damage from cisplatin, staurosporine, irinotecan, doxorubicin, and the glucocorticoid dexamethasone. The acetonitrile–water extract (range 0.1–5 mg/mL) was obtained by extracting 10 g of lentil flour with 50 milliliters of the acetonitrile–water extraction mixture in a 70:30 ratio, first for 3 h and then overnight in a shaker at room temperature. The next day, the extract was filtered and passed through a Rotavapor to obtain only the aqueous component and eliminate that with acetonitrile, and then freeze-dried to finally have the powdered extract. In vitro experiments showed that the extract prevented the cytotoxic damage induced by cisplatin, irinotecan, and doxorubicin on HEK293 and SHSY5Y cell lines after 24–96 h. In murine osteoblasts after 24–72 h of incubation time, the extract was cytoprotective against all chemicals. The extract was effective against dexamethasone, leading to synergic cell proliferation in all cell types. In bone marrow cells, the extract is cytoprotective after 72 h against doxorubicin, staurosporine, and dexamethasone. Instead, on muscle fibers, the extract has a synergic effect with chemotherapeutics, increasing cytotoxicity induced by doxorubicin and staurosporine. LC-MS attested to the existence of several phenolic structures in the extract. The most abundant families of compounds were flavonoids (25.7%) and mellitic acid (18%). Thus, the development of this extract could be implemented in the area of research related to the chemoprevention of damage to renal, neuronal, bone marrow cells, and osteoblasts by chemotherapeutics; moreover, it could be used as a reinforcer of cytotoxic action of chemotherapeutics on muscle fibers.

  • Immunohistochemical, pharmacovigilance, and omics analyses reveal the involvement of ATP-sensitive K<sup>+</sup> channel subunits in cancers: role in drug–disease interactions
    Fatima Maqoud, Nicola Zizzo, Marcella Attimonelli, Antonella Tinelli, Giuseppe Passantino, Marina Antonacci, Girolamo Ranieri, and Domenico Tricarico

    Frontiers Media SA
    Background: ATP-sensitive-K+ channels (KATP) are involved in diseases, but their role in cancer is poorly described. Pituitary macroadenoma has been observed in Cantu’ syndrome (C.S.), which is associated with the gain-of-function mutations of the ABCC9 and KCNJ8 genes. We tested the role of the ABCC8/Sur1, ABCC9/Sur2A/B, KCNJ11/Kir6.2, and KCNJ8/Kir6.1 genes experimentally in a minoxidil-induced renal tumor in male rats and in the female canine breast cancer, a spontaneous animal model of disease, and in the pharmacovigilance and omics databases.Methods: We performed biopsies from renal tissues of male rats (N = 5) following a sub-chronic high dosing topical administration of minoxidil (0.777–77.7 mg/kg/day) and from breast tissues of female dogs for diagnosis (N = 23) that were analyzed by immunohistochemistry. Pharmacovigilance and omics data were extracted from EudraVigilance and omics databases, respectively.Results: An elevated immunohistochemical reactivity to Sur2A-mAb was detected in the cytosol of the Ki67+/G3 cells other than in the surface membrane in the minoxidil-induced renal tumor and the breast tumor samples. KCNJ11, KCNJ8, and ABCC9 genes are upregulated in cancers but ABCC8 is downregulated. The Kir6.2-Sur2A/B-channel opener minoxidil showed 23 case reports of breast cancer and one case of ovarian cancer in line with omics data reporting, respectively, and the negative and positive prognostic roles of the ABCC9 gene in these cancers. Sulfonylureas and glinides blocking the pancreatic Kir6.2-Sur1 subunits showed a higher risk for pancreatic cancer in line with the positive prognostic role of the ABCC8 gene but low risks for common cancers. Glibenclamide, repaglinide, and glimepiride show a lower cancer risk within the KATP channel blockers. The Kir6.2-Sur1 opener diazoxide shows no cancer reactions.Conclusion: An elevated expression of the Sur2A subunit was found in proliferating cells in two animal models of cancer. Immunohistochemistry/omics/pharmacovigilance data reveal the role of the Kir6.1/2-Sur2A/B subunits as a drug target in breast/renal cancers and in C.S.

  • β3 Adrenergic Receptor Agonist Mirabegron Increases AQP2 and NKCC2 Urinary Excretion in OAB Patients: A Pleiotropic Effect of Interest for Patients with X-Linked Nephrogenic Diabetes Insipidus
    Serena Milano, Fatima Maqoud, Monica Rutigliano, Ilenia Saponara, Monica Carmosino, Andrea Gerbino, Giuseppe Lucarelli, Michele Battaglia, Maria Svelto, and Giuseppe Procino

    MDPI AG
    We previously reported the novel finding that β3-AR is functionally expressed in the renal tubule and shares its cellular localization with the vasopressin receptor AVPR2, whose physiological stimulation triggers antidiuresis by increasing the plasma membrane expression of the water channel AQP2 and the NKCC2 symporter in renal cells. We also showed that pharmacologic stimulation of β3-AR is capable of triggering antidiuresis and correcting polyuria, in the knockout mice for the AVPR2 receptor, the animal model of human X-linked nephrogenic diabetes insipidus (XNDI), a rare genetic disease still missing a cure. Here, to demonstrate that the same response can be evoked in humans, we evaluated the effect of treatment with the β3-AR agonist mirabegron on AQP2 and NKCC2 trafficking, by evaluating their urinary excretion in a cohort of patients with overactive bladder syndrome, for the treatment of which the drug is already approved. Compared to baseline, treatment with mirabegron significantly increased AQP2 and NKCC2 excretion for the 12 weeks of treatment. This data is a step forward in corroborating the hypothesis that in patients with XNDI, treatment with mirabegron could bypass the inactivation of AVPR2, trigger antidiuresis and correct the dramatic polyuria which is the main hallmark of this disease.

  • Counteractions of a Novel Hydroalcoholic Extract from Lens Culinaria against the Dexamethasone-Induced Osteoblast Loss of Native Murine Cells
    Marina Antonacci, Jacopo Raffaele Dibenedetto, Fatima Maqoud, Gerardo Centoducati, Nicola Colonna, Francesco Leonetti, and Domenico Tricarico

    MDPI AG
    The cytoprotective effects of a novel hydroalcoholic extract (0.01–5 mg/mL) from Lens culinaria (Terre di Altamura Srl) were investigated within murine native skeletal muscle fibers, bone marrow cells, and osteoblasts, and in cell lines treated with the apoptotic agent staurosporine (2.14 × 10−6 M), the alkylating drug cisplatin (10−4 M), the topoisomerase I inhibitor irinotecan (10−4 M), the antimitotic pro-oxidant doxorubicin (10−6 M), and the immunosuppressant dexamethasone (2 × 10−6 M). An amount of 10g of plant material was used to obtain a 70% ethanol/water product, following two-step extraction, evaporation, lyophilization, and storage at −20 °C. For the murine osteoblasts, doxorubicin reduced survival by −65%, dexamethasone by −32% and −60% after 24 and 48 h of incubation time, respectively. The extract was effective in preventing the osteoblast count-reduction induced by dexamethasone; it was also effective at preventing the inhibition of mineralization induced by dexamethasone. Doxorubicin and cisplatin caused a significant reduction in cell growth by −77% for bone marrow cells, −43% for irinotecan, and −60% for dexamethasone, but there was no evidence for the cytoprotective effects of the extract in these cells. Staurosporine and doxorubicin caused a fiber death rate of &gt;−40% after 18 and 24 h of incubation, yet the extract was not effective at preventing these effects. The extract was effective in preventing the staurosporine-induced reduction of HEK293 proliferation and colony formation in the crystal violet DNA staining and the clonogenic assays. It was also effective for the cisplatin-induced reduction in HEK293 cell proliferation. The extract, however, failed to protect the SHSY5Y neurons against cisplatin and irinotecan-induced cytotoxicity. A UV/VIS spectroscopy analysis showed three peaks at the wavelengths of 350, 260, and 190 nm, which correspond to flavonoids, proanthocyanins, salicylates, and AA, constituting the extract. These data suggest the possible development of this extract for use against dexamethasone-induced bone loss and renal chemotherapy-induced damage.

  • Bisphosphonates Targeting Ion Channels and Musculoskeletal Effects
    Rosa Scala, Fatima Maqoud, Marina Antonacci, Jacopo Raffaele Dibenedetto, Maria Grazia Perrone, Antonio Scilimati, Karen Castillo, Ramón Latorre, Diana Conte, Saïd Bendahhou,et al.

    Frontiers Media SA
    Bisphosphonates (BPs) are the most used bone-specific anti-resorptive agents, often chosen as first-line therapy in several bone diseases characterized by an imbalance between osteoblast-mediated bone production and osteoclast-mediated bone resorption. BPs target the farnesyl pyrophosphate synthase (FPPS) in osteoclasts, reducing bone resorption. Lately, there has been an increasing interest in BPs direct pro-survival/pro-mineralizing properties in osteoblasts and their pain-relieving effects. Even so, molecular targets involved in these effects appear now largely elusive. Ion channels are emerging players in bone homeostasis. Nevertheless, the effects of BPs on these proteins have been poorly described. Here we reviewed the actions of BPs on ion channels in musculoskeletal cells. In particular, the TRPV1 channel is essential for osteoblastogenesis. Since it is involved in bone pain sensation, TRPV1 is a possible alternative target of BPs. Ion channels are emerging targets and anti-target for bisphosphonates. Zoledronic acid can be the first selective musculoskeletal and vascular KATP channel blocker targeting with high affinity the inward rectifier channels Kir6.1-SUR2B and Kir6.2-SUR2A. The action of this drug against the overactive mutants of KCNJ9-ABCC9 genes observed in the Cantu’ Syndrome (CS) may improve the appropriate prescription in those CS patients affected by musculoskeletal disorders such as bone fracture and bone frailty.

  • Multicenter Observational/Exploratory Study Addressed to the Evaluation of the Effectiveness and Safety of Pharmacological Therapy in Opioid-Dependent Patients in Maintenance Therapy in Southern Italy
    Fatima Maqoud, Giada Fabio, Nunzio Ciliero, Marina Antonacci, Francesca Mastrangelo, Giorgio Sammarruco, Roberto Cataldini, Gabriella Schirosi, Salvatore De Fazio, and Domenico Tricarico

    MDPI AG
    A multicenter-observational study was performed to assess the effectiveness of rac-methadone, levomethadone, and buprenorphine in opioid-dependent patients in polytherapy in Southern Italy. The primary endpoint was the reduction of urinary positivity to the substances and the maintaining doses. Patients (N = 266, age = 44.80 ± 5.65, male = 79.70%, female = 20.30%) have been recruited. At recruitment, 75% of them were on treatment with rac-methadone, levomethadone, and buprenorphine/naloxone. The patients were grouped into three clusters. The levomethadone patients of Cluster A (N patients = 211), after 180 days, showed stability in urinary methadone positivity, with a marked decrease in heroin −53 ± 4%, cannabinol’s −48 ± 2%, and cocaine −37 ± 6% positivity, with no differences between treatments. A lower QTcF value of 426 ± 8.4 ms was recorded in the levomethadone patients (delta = −19 ms) vs. rac-methadone, at significantly lower doses of levomethadone (−34%, −50.2% in males) (p &lt; 0.05). The Cluster B data were collected from 37 patients, with a high prevalence of comorbidity infections (HIV/HCV/HPV), monitored for 21 months during COVID-19. High doses of levomethadone (58.33 ± 31.58 mg/day) were needed to stabilize those that were negative for opioids and cannabinoids, in contrast to the rac-methadone and buprenorphine/naloxone patients that showed positive toxicology. Eighteen patients of the Cluster C in double diagnosis (major depressive 38.90%, bipolar 27.78%, and schizophrenia 16.67%) were stabilized with high doses of racemate 97.5 ± 8 mg/day, 51.8 ± 5 mg/day of levomethadone (−46.8% vs. rac-methadone; −71% in men), and 2.5 ± 1 mg/day of buprenorphine/naloxone. Three patients in remission were treated with tapering doses of levomethadone. Significantly reduced QTcF values were recorded with levomethadone (delta −32 ms vs. rac-methadone) in the bipolar patients, as well as the schizophrenia patients in remission (delta −45.19 ms vs. rac-methadone). Our patients were safely stabilized. Levomethadone, compared to the racemate, contributes to reducing the illicit use, especially of opioids and cannabinoids at significantly lower doses with cardiovascular safety, which, in bipolar patients, is clinically significant.

  • ATP-sensitive Potassium Channel Subunits in Neuroinflammation: Novel Drug Targets in Neurodegenerative Disorders
    Fatima Maqoud, Rosa Scala, Malvina Hoxha, Bruno Zappacosta, and Domenico Tricarico

    Bentham Science Publishers Ltd.
    : Arachidonic acids and its metabolites modulate plenty of ligand-gated, voltage-dependent ion channels, and metabolically regulated potassium channels including ATP-sensitive potassium channels (KATP). KATP channels are hetero-multimeric complexes of sulfonylureas receptors (SUR1, SUR2A or SUR2B) and the pore-forming subunits (Kir6.1 and Kir6.2) likewise expressed in the pre-post synapsis of neurons and inflammatory cells, thereby affecting their proliferation and activity. KATP channels are involved in amyloid-β (Aβ)-induced pathology, therefore emerging as therapeutic targets against Alzheimer’s and related diseases. The modulation of these channels can represent an innovative strategy for the treatment of neurodegenerative disorders; nevertheless, the currently available drugs are not selective for brain KATP channels and show contrasting effects. This phenomenon can be a consequence of the multiple physiological roles of the different varieties of KATP channels. Openings of cardiac and muscular KATP channel subunits, are protective against caspase-dependent atrophy in these tissues and some neurodegenerative disorders, whereas in some neuroinflammatory diseases, benefits can be obtained through the inhibition of neuronal KATP channel subunits. For example, glibenclamide exerts an anti-inflammatory effect in respiratory, digestive, urological, and central nervous system (CNS) diseases, as well as in ischemia-reperfusion injury associated with abnormal SUR1-Trpm4/TNF-α or SUR1-Trpm4/ Nos2/ROS signaling. Despite this strategy being promising, glibenclamide may have limited clinical efficacy due to its unselective blocking action of SUR2A/B subunits also expressed in cardiovascular apparatus with pro-arrhythmic effects and SUR1 expressed in pancreatic beta cells with hypoglycemic risk. Alternatively, neuronal selective dual modulators showing agonist/antagonist actions on KATP channels can be an option.

  • Zoledronic acid as a novel dual blocker of KIR6.1/2-SUR2 subunits of ATP-sensitive K<sup>+</sup> channels: Role in the adverse drug reactions
    Fatima Maqoud, Rosa Scala, Vincenzo Tragni, Ciro Leonardo Pierri, Maria Grazia Perrone, Antonio Scilimati, and Domenico Tricarico

    MDPI AG
    Zoledronic acid (ZOL) is used as a bone-specific antiresorptive drug with antimyeloma effects. Adverse drug reactions (A.D.R.) are associated with ZOL-therapy, whose mechanics are unknown. ZOL is a nitrogen-containing molecule whose structure shows similarities with nucleotides, ligands of ATP-sensitive K+ (KATP) channels. We investigated the action of ZOL by performing in vitro patch-clamp experiments on native KATP channels in murine skeletal muscle fibers, bone cells, and recombinant subunits in cell lines, and by in silico docking the nucleotide site on KIR and SUR, as well as the glibenclamide site. ZOL fully inhibited the KATP currents recorded in excised macro-patches from Extensor digitorum longus (EDL) and Soleus (SOL) muscle fibers with an IC50 of 1.2 ± 1.4 × 10−6 and 2.1 ± 3.7 × 10−10 M, respectively, and the KATP currents recorded in cell-attached patches from primary long bone cells with an IC50 of 1.6 ± 2.8 × 10−10 M. ZOL fully inhibited a whole-cell KATP channel current of recombinant KIR6.1-SUR2B and KIR6.2-SUR2A subunits expressed in HEK293 cells with an IC50 of 3.9 ± 2.7 × 10−10 M and 7.1 ± 3.1 × 10−6 M, respectively. The rank order of potency in inhibiting the KATP currents was: KIR6.1-SUR2B/SOL-KATP/osteoblast-KATP &gt; KIR6.2-SUR2A/EDL-KATP &gt;&gt;&gt; KIR6.2-SUR1 and KIR6.1-SUR1. Docking investigation revealed that the drug binds to the ADP/ATP sites on KIR6.1/2 and SUR2A/B and on the sulfonylureas site showing low binding energy &lt;6 Kcal/mol for the KIR6.1/2-SUR2 subunits vs. the &lt;4 Kcal/mol for the KIR6.2-SUR1. The IC50 of ZOL to inhibit the KIR6.1/2-SUR2A/B channels were correlated with its musculoskeletal and cardiovascular risks. We first showed that ZOL blocks at subnanomolar concentration musculoskeletal KATP channels and cardiac and vascular KIR6.2/1-SUR2 channels.

  • Consequences of sur2[a478v] mutation in skeletal muscle of murine model of cantu syndrome
    Rosa Scala, Fatima Maqoud, Nicola Zizzo, Giuseppe Passantino, Antonietta Mele, Giulia Maria Camerino, Conor McClenaghan, Theresa M. Harter, Colin G. Nichols, and Domenico Tricarico

    MDPI AG
    (1) Background: Cantu syndrome (CS) arises from gain-of-function (GOF) mutations in the ABCC9 and KCNJ8 genes, which encode ATP-sensitive K+ (KATP) channel subunits SUR2 and Kir6.1, respectively. Most CS patients have mutations in SUR2, the major component of skeletal muscle KATP, but the consequences of SUR2 GOF in skeletal muscle are unknown. (2) Methods: We performed in vivo and ex vivo characterization of skeletal muscle in heterozygous SUR2[A478V] (SUR2wt/AV) and homozygous SUR2[A478V] (SUR2AV/AV) CS mice. (3) Results: In SUR2wt/AV and SUR2AV/AV mice, forelimb strength and diaphragm amplitude movement were reduced; muscle echodensity was enhanced. KATP channel currents recorded in Flexor digitorum brevis fibers showed reduced MgATP-sensitivity in SUR2wt/AV, dramatically so in SUR2AV/AV mice; IC50 for MgATP inhibition of KATP currents were 1.9 ± 0.5 × 10−5 M in SUR2wt/AV and 8.6 ± 0.4 × 10−6 M in WT mice and was not measurable in SUR2AV/AV. A slight rightward shift of sensitivity to inhibition by glibenclamide was detected in SUR2AV/AV mice. Histopathological and qPCR analysis revealed atrophy of soleus and tibialis anterior muscles and up-regulation of atrogin-1 and MuRF1 mRNA in CS mice. (4) Conclusions: SUR2[A478V] “knock-in” mutation in mice impairs KATP channel modulation by MgATP, markedly so in SUR2AV/AV, with atrophy and non-inflammatory edema in different skeletal muscle phenotypes.

  • Oxtr/TRPV1 expression and acclimation of skeletal muscle to cold-stress in male mice
    Elena Conte, Adele Romano, Michela De Bellis, Marialuisa de Ceglia, Maria Rosaria Carratù, Silvana Gaetani, Fatima Maqoud, Domenico Tricarico, and Claudia Camerino

    Bioscientifica
    We explored the involvement of oxytocin receptor (Oxtr)/transient-receptor-potential-vanilloid-1 (TRPV1) genes and oxytocin (Oxt) on the adaptation of skeletal muscle to cold stress challenge in mice. Oxtr expression in hypothalamic paraventricular (PVN), supraoptic nuclei (SON), and hippocampus (HIPP) were evaluated by immunohistochemistry in parallel with the measurement of circulating Oxt. The Oxtr and TRPV1 gene expressions in soleus (SOL) and tibialis anterior (TA) muscles were investigated by RT-PCR. Histological studies of the cardiac muscle after cold stress were also performed. Male mice (n = 15) were divided into controls maintained at room temperature (RT = 24°C), exposed to cold stress (CS) at T = 4°C for 6 h , and 5 days. Immunohistochemical studies showed that Oxtr protein expression increased by two-fold (P = 0.01) in PVN and by 1.5-fold (P = 0.0001) in HIPP after 6 h- and 5 days of CS but decreased by 2-fold (P = 0.026) in SON in 5 days. Both Oxtr and TRPV1 gene expression increased after 6 h and 5 days of CS in SOL and TA muscles. Oxtr vs TRPV1 gene expression in SOL and TA muscles evaluated by regression analysis was linearly correlated following CS at 6 h and 5 days but not at control temperature of 24 ± 1°C, supporting the hypothesis of coupling between these genes. The circulating levels of Oxt are unaffected after 6 h of CS but decreased by 0.2-fold (P = 0.0141) after 5 days-CS. This is the first report that Oxtr and TRPV1 expressions are upregulated in response to cold acclimation in skeletal muscle. The up-regulation of Oxtr in PVN and HIPP balances the decrease of circulating Oxt.

  • Bridging repair of the abdominal wall in a rat experimental model. Comparison between uncoated and polyethylene oxide-coated equine pericardium meshes
    Alessandro Pasculli, Angela Gurrado, Giuseppe Massimiliano De Luca, Antonietta Mele, Andrea Marzullo, Annarosa Mangone, Saverio Cellamare, Valentina Ferraro, Fatima Maqoud, Maria Cristina Caggiani,et al.

    Springer Science and Business Media LLC
    AbstractBiological meshes improve the outcome of incisional hernia repairs in infected fields but often lead to recurrence after bridging techniques. Sixty male Wistar rats undergoing the excision of an abdominal wall portion and bridging mesh repair were randomised in two groups: Group A (N = 30) using the uncoated equine pericardium mesh; Group B (N = 30) using the polyethylene oxide (PEO)-coated one. No deaths were observed during treatment. Shrinkage was significantly less common in A than in B (3% vs 53%, P &lt; 0.001). Adhesions were the most common complication and resulted significantly higher after 90 days in B than in A (90% vs 30%, P &lt; 0.01). Microscopic examination revealed significantly (P &lt; 0.05) higher mesh integrity, fibrosis and calcification in B compared to A. The enzymatic degradation, as assessed with Raman spectroscopy and enzyme stability test, affected A more than B. The PEO-coated equine pericardium mesh showed higher resistance to biodegradation compared to the uncoated one. Understanding the changes of these prostheses in a surgical setting may help to optimize the PEO-coating in designing new biomaterials for the bridging repair of the abdominal wall.

  • Pathophysiological Consequences of KATP Channel Overactivity and Pharmacological Response to Glibenclamide in Skeletal Muscle of a Murine Model of Cantù Syndrome
    Rosa Scala, Fatima Maqoud, Nicola Zizzo, Antonietta Mele, Giulia Maria Camerino, Francesco Alfredo Zito, Girolamo Ranieri, Conor McClenaghan, Theresa M. Harter, Colin G. Nichols,et al.

    Frontiers Media SA
    Cantù syndrome (CS) arises from mutations in ABCC9 and KCNJ8 genes that lead to gain of function (GOF) of ATP-sensitive potassium (KATP) channels containing SUR2A and Kir6.1 subunits, respectively, of KATP channels. Pathological consequences of CS have been reported for cardiac and smooth muscle cells but consequences in skeletal muscle are unknown. Children with CS show muscle hypotonia and adult manifest fatigability. We analyzed muscle properties of Kir6.1[V65M] CS mice, by measurements of forelimb strength and ultrasonography of hind-limb muscles, as well as assessing KATP channel properties in native Flexor digitorum brevis (FDB) and Soleus (SOL) fibers by the patch-clamp technique in parallel with histopathological, immunohistochemical and Polymerase Chain Reaction (PCR) analysis. Forelimb strength was lower in Kir6.1wt/VM mice than in WT mice. Also, a significant enhancement of echodensity was observed in hind-limb muscles of Kir6.1wt/VM mice relative to WT, suggesting the presence of fibrous tissue. There was a higher KATP channel current amplitude in Kir6.1wt/VM FDB fibers relative to WT and a reduced response to glibenclamide. The IC50 of glibenclamide to block KATP channels in FDB fibers was 1.3 ± 0.2 × 10−7 M in WT and 1.2 ± 0.1 × 10−6 M in Kir6.1wt/VM mice, respectively; and it was 1.2 ± 0.4 × 10−7 M in SOL WT fibers but not measurable in Kir6.1wt/VM fibers. The sensitivity of the KATP channel to MgATP was not modified in Kir6.1wt/VM fibers. Histopathological/immunohistochemical analysis of SOL revealed degeneration plus regressive-necrotic lesions with regeneration, and up-regulation of Atrogin-1, MuRF1, and BNIP3 mRNA/proteins in Kir6.1wt/VM mice. Kir6.1wt/VM mutation in skeletal muscle leads to changes of the KATP channel response to glibenclamide in FDB and SOL fibers, and it is associated with histopathological and gene expression changes in slow-twitch muscle, suggesting marked atrophy and autophagy.

  • The hydroxypropyl-β-cyclodextrin-minoxidil inclusion complex improves the cardiovascular and proliferative adverse effects of minoxidil in male rats: Implications in the treatment of alopecia
    Fatima Maqoud, Nicola Zizzo, Antonietta Mele, Nunzio Denora, Giuseppe Passantino, Rosa Scala, Annalisa Cutrignelli, Antonella Tinelli, Valentino Laquintana, Flavia Forgia,et al.

    Wiley
    The efficacy of minoxidil (MXD) ethanolic solutions (1%‐5% w/v) in the treatment of androgenetic alopecia is limited by adverse reactions. The toxicological effects of repeated topical applications of escalating dose (0.035%‐3.5% w/v) and of single and twice daily doses (3.5% w/v) of a novel hydroxypropyl‐β‐cyclodextrin MXD GEL formulation (MXD/HP‐β‐CD) and a MXD solution were investigated in male rats. The cardiovascular effects were evaluated by telemetric monitoring of ECG and arterial pressure in free‐moving rats. Ultrasonographic evaluation of cardiac morphology and function, and histopathological and biochemical analysis of the tissues, were performed. A pharmacovigilance investigation was undertaken using the EudraVigilance database for the evaluation of the potential cancer‐related effects of topical MXD. Following the application of repeated escalating doses of MXD solution, cardiac hypertrophy, hypotension, enhanced serum natriuretic peptides and K+‐ion levels, serum liver biomarkers, and histological lesions including renal cancer were observed. In addition, the administration of a twice daily dose of MXD solution, at SF rat vs human = 311, caused reductions in the systolic, diastolic, and mean blood pressure of the rats (−30.76 ± 3%, −28.84 ± 4%, and −30.66 ± 5%, respectively, vs the baseline; t test P < .05). These effects were not reversible following washout of the MXD solution. Retrospective investigation showed 32 cases of cancer associated with the use of topical MXD in humans. The rats treated with MXD HP‐β‐CD were less severely affected. MXD causes proliferative adverse effects. The MXD HP‐β‐CD inclusion complex reduces these adverse effects.

  • Thymidine Phosphorylase Expression and Microvascular Density Correlation Analysis in Canine Mammary Tumor: Possible Prognostic Factor in Breast Cancer
    Nicola Zizzo, Giuseppe Passantino, Roberta Maria D'alessio, Antonella Tinelli, Giuseppe Lopresti, Rosa Patruno, Domenico Tricarico, Fatima Maqoud, Rosa Scala, Francesco Alfredo Zito,et al.

    Frontiers Media SA
    Purpose: The thymidine phosphorylase (TP) is a key enzyme involved in the metabolism of pyrimidines. Inhibition or downregulation of this enzyme causes accumulation of metabolites with consequences in DNA replication. TP regulates angiogenesis and chemotactic activity of endothelial cells. Different studies showed the presence of TP upregulation in human cancer but the correlation between TP expression and the microvascular density (MVD) in canine mammary tumors is unknown. The aim of this study was to investigate a possible correlation between the MVD and TP expression in tumor cells of canine mammary tumors of different degree of severity (G1–G3) by immunohistochemical analysis. Methods: Sixty-eight samples of spontaneous mammary neoplasia of 5–12 cm in diameter were collected from purebred and mixed-breed dogs (mean aged = 9.5 ± 7), not subject to chemotherapy treatments in veterinary clinics. Histopathological analysis and immunostaining were performed. Results: Carcinoma simple samples have been classified as 72.06% of tubule-papillary, 20.59% cysto-papillary, and 7.35% tubular carcinomas. Immunostainings revealed a marked cytoplasmic expression of TP in 30.88% of samples, mild in 32.35%, weaker in 22.07%, and negative in 14.70%. The correlation analysis and two-way ANOVA showed a linear correlation between MVD and TP with a coefficient of correlation (r) > 0.5 (p < 0.05) in G2 and G3. No correlation between variables was found in G1. Conclusions: These findings suggest that cytoplasmic TP overexpression is correlated with microvascular density in canine mammary tumors, in severe grade, and it can be a potential prognostic factor in breast cancer.

  • Zoledronic acid modulation of TRPV1 channel currents in osteoblast cell line and native rat and mouse bone marrow-derived osteoblasts: Cell proliferation and mineralization effect
    Rosa Scala, Fatima Maqoud, Mariacristina Angelelli, Ramon Latorre, Maria Perrone, Antonio Scilimati, and Domenico Tricarico

    MDPI AG
    Bisphosphonates (BPs) reduce bone pain and fractures by balancing the osteoblast/osteoclast ratio. The behavior of ion channels in the presence of BPs is not known. To investigate this, the effect of zoledronic acid BP (ZOL) (3 × 10−8 to 5 × 10−4 M) treatment, on ion channels, cell proliferation, and mineralization, has been investigated on preosteoclast-like cells, RAW264.7, preosteoblast-like cells MC3T3-E1, and rat/mouse native bone marrow-derived osteoblasts. In whole-cell patch clamp on cell line- and bone marrow-derived osteoblasts, ZOL potentiated outward currents. On RAW264.7, ZOL (10−4 M)-evoked current was reduced by the Kv channel blocker tetraethylammonium hydrochloride (TEA), but not by the selective TRPV1-channel antagonist capsazepine. On MC3T3-E1 cells and bone marrow-derived osteoblasts, ZOL-evoked current (5 × 10−8 to 10−4 M) was reduced by capsazepine, whereas the selective TRPV1-channel agonist capsaicin potentiated the control current. In the cell proliferation assay, 72 h incubation of RAW264.7 and MC3T3-E1 cells with ZOL reduced proliferation, with IC50 values of 2.62 × 10−7 M and 2.02 × 10−5 M, respectively. Mineralization of MC3T3-E1 cells and bone marrow-derived osteoblasts was observed in the presence of capsaicin and ZOL (5 × 10−8–10−7 M); ZOL effects were antagonized by capsazepine. In summary, the ZOL-induced activation of TRPV1 channel mediates the mineralization of osteoblasts and counterbalances the antiproliferative effects, increasing the IC50. This mechanism is not operative in osteoclasts lacking the TRPV1 channel.

  • Single-dose extended-toxicity preclinical study on novel radiotracer formulations for use in the diagnosis of neuroendocrine tumor and neurodegenerative disorders


  • Cell cycle regulation by Ca<sup>2+</sup>-activated K<sup>+</sup> (BK) channels modulators in SH-SY5Y neuroblastoma cells
    Fatima Maqoud, Angela Curci, Rosa Scala, Alessandra Pannunzio, Federica Campanella, Mauro Coluccia, Giuseppe Passantino, Nicola Zizzo, and Domenico Tricarico

    MDPI AG
    The effects of Ca2+-activated K+ (BK) channel modulation by Paxilline (PAX) (10−7–10−4 M), Iberiotoxin (IbTX) (0.1–1 × 10−6 M) and Resveratrol (RESV) (1–2 × 10−4 M) on cell cycle and proliferation, AKT1pSer473 phosphorylation, cell diameter, and BK currents were investigated in SH-SY5Y cells using Operetta-high-content-Imaging-System, ELISA-assay, impedentiometric counting method and patch-clamp technique, respectively. IbTX (4 × 10−7 M), PAX (5 × 10−5 M) and RESV (10−4 M) caused a maximal decrease of the outward K+ current at +30 mV (Vm) of −38.3 ± 10%, −31.9 ± 9% and −43 ± 8%, respectively, which was not reversible following washout and cell depolarization. After 6h of incubation, the drugs concentration dependently reduced proliferation. A maximal reduction of cell proliferation, respectively of −60 ± 8% for RESV (2 × 10−4 M) (IC50 = 1.50 × 10−4 M), −65 ± 6% for IbTX (10−6 M) (IC50 = 5 × 10−7 M), −97 ± 6% for PAX (1 × 10−4 M) (IC50 = 1.06 × 10−5 M) and AKT1pser473 dephosphorylation was observed. PAX induced a G1/G2 accumulation and contraction of the S-phase, reducing the nuclear area and cell diameter. IbTX induced G1 contraction and G2 accumulation reducing diameter. RESV induced G2 accumulation and S contraction reducing diameter. These drugs share common actions leading to a block of the surface membrane BK channels with cell depolarization and calcium influx, AKT1pser473 dephosphorylation by calcium-dependent phosphatase, accumulation in the G2 phase, and a reduction of diameter and proliferation. In addition, the PAX action against nuclear membrane BK channels potentiates its antiproliferative effects with early apoptosis.

  • Alginate-Based Hydrogel Containing Minoxidil/Hydroxypropyl-β-Cyclodextrin Inclusion Complex for Topical Alopecia Treatment
    Angela Lopedota, Nunzio Denora, Valentino Laquintana, Annalisa Cutrignelli, Antonio Lopalco, Domenico Tricarico, Fatima Maqoud, Angela Curci, Maria Mastrodonato, Flavia la Forgia,et al.

    Elsevier BV

  • Characterization of minoxidil/hydroxypropyl-β-cyclodextrin inclusion complex in aqueous alginate gel useful for alopecia management: Efficacy evaluation in male rat
    Domenico Tricarico, Fatima Maqoud, Angela Curci, Giuliamaria Camerino, Nicola Zizzo, Nunzio Denora, Annalisa Cutrignelli, Valentino Laquintana, Antonio Lopalco, Flavia la Forgia,et al.

    Elsevier BV

  • Molecular structure and function of big calcium-activated potassium channels in skeletal muscle: Pharmacological perspectives
    Fatima Maqoud, Michela Cetrone, Antonietta Mele, and Domenico Tricarico

    American Physiological Society
    The large-conductance Ca2+-activated K+(BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK), and smooth muscles. These channels are activated by changes in membrane electrical potential and by increases in the concentration of intracellular calcium ion (Ca2+). The BK channel is subjected to many mechanisms that add diversity to the BK channel α-subunit gene. These channels are indeed subject to alternative splicing, auxiliary subunits modulation, posttranslational modifications, and protein-protein interactions. BK channels can be modulated by diverse molecules that may induce either an increase or decrease in channel activity. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, have been found to be relevant in many physiological processes. BK channel diversity is obtained by means of alternative splicing and modulatory β- and γ-subunits. The association of the α-subunit with β- or with γ-subunits can change the BK channel phenotype, functional diversity, and pharmacological properties in different tissues. In the case of the skeletal muscle BK channel (sarco-BK channel), we established that the main mechanism regulating BK channel diversity is the alternative splicing of the KCNMA1/slo1 gene encoding for the α-subunit generating different splicing isoform in the muscle phenotypes. This finding helps to design molecules selectively targeting the skeletal muscle subtypes. The use of drugs selectively targeting the skeletal muscle BK channels is a promising strategy in the treatment of familial disorders affecting muscular skeletal apparatus including hyperkalemia and hypokalemia periodic paralysis.

  • A novel injectable formulation of 6-fluoro-L-DOPA imaging agent for diagnosis of neuroendocrine tumors and Parkinson's disease
    Adriana Trapani, Domenico Tricarico, Antonietta Mele, Fatima Maqoud, Delia Mandracchia, Paola Vitale, Vito Capriati, Giuseppe Trapani, Vincenzo Dimiccoli, Anna Tolomeo,et al.

    Elsevier BV

  • Antiproliferative effects of neuroprotective drugs targeting big Ca2+-activated K+ (BK) channel in the undifferentiated neuroblastoma cells