Felix Pareja del Rio

@cun.es

Radiopharmacist / Radiopharmacy Unit (Nuclear Medicine Department)
Clinica Universidad de Navarra



           

https://researchid.co/fpareja

RESEARCH, TEACHING, or OTHER INTERESTS

Multidisciplinary

4

Scopus Publications

Scopus Publications

  • Radiolabeled Risperidone microSPECT/CT Imaging for Intranasal Implant Studies Development
    Jon Ander Simón, Emilia Utomo, Félix Pareja, María Collantes, Gemma Quincoces, Aarón Otero, Margarita Ecay, Juan Domínguez-Robles, Eneko Larrañeta, and Iván Peñuelas

    MDPI AG
    The use of intranasal implantable drug delivery systems has many potential advantages for the treatment of different diseases, as they can provide sustained drug delivery, improving patient compliance. We describe a novel proof-of-concept methodological study using intranasal implants with radiolabeled risperidone (RISP) as a model molecule. This novel approach could provide very valuable data for the design and optimization of intranasal implants for sustained drug delivery. RISP was radiolabeled with 125I by solid supported direct halogen electrophilic substitution and added to a poly(lactide-co-glycolide) (PLGA; 75/25 D,L-Lactide/glycolide ratio) solution that was casted on top of 3D-printed silicone molds adapted for intranasal administration to laboratory animals. Implants were intranasally administered to rats, and radiolabeled RISP release followed for 4 weeks by in vivo non-invasive quantitative microSPECT/CT imaging. Percentage release data were compared with in vitro ones using radiolabeled implants containing either 125I-RISP or [125I]INa and also by HPLC measurement of drug release. Implants remained in the nasal cavity for up to a month and were slowly and steadily dissolved. All methods showed a fast release of the lipophilic drug in the first days with a steadier increase to reach a plateau after approximately 5 days. The release of [125I]I− took place at a much slower rate. We herein demonstrate the feasibility of this experimental approach to obtain high-resolution, non-invasive quantitative images of the release of the radiolabeled drug, providing valuable information for improved pharmaceutical development of intranasal implants.

  • Infection-specific PET imaging with <sup>18</sup>F-fluorodeoxysorbitol and 2-[<sup>18</sup>F]F-ρ-aminobenzoic acid: An extended diagnostic tool for bacterial and fungal diseases
    Marta Rua, Jon Ander Simón, María Collantes, Margarita Ecay, José Leiva, Francisco Carmona-Torre, Rocío Ramos, Félix Pareja, Krishna R. Pulagam, Jordi Llop,et al.

    Frontiers Media SA
    IntroductionSuspected infectious diseases located in difficult-to-access sites can be challenging due to the need for invasive procedures to isolate the etiological agent. Positron emission tomography (PET) is a non-invasive imaging technology that can help locate the infection site. The most widely used radiotracer for PET imaging (2-deoxy-2[18F] fluoro-D-glucose: [18F]FDG) shows uptake in both infected and sterile inflammation. Therefore, there is a need to develop new radiotracers able to specifically detect microorganisms.MethodsWe tested two specific radiotracers: 2-deoxy-2-[18F]-fluoro-D-sorbitol ([18F]FDS) and 2-[18F]F-ρ-aminobenzoic acid ([18F]FPABA), and also developed a simplified alternative of the latter for automated synthesis. Clinical and reference isolates of bacterial and yeast species (19 different strains in all) were tested in vitro and in an experimental mouse model of myositis infection.Results and discussionNon-lactose fermenters (Pseudomonas aeruginosa and Stenotrophomonas maltophilia) were unable to take up [18F]FDG in vitro. [18F]FDS PET was able to visualize Enterobacterales myositis infection (i.e., Escherichia coli) and to differentiate between yeasts with differential assimilation of sorbitol (i.e., Candida albicans vs. Candida glabrata). All bacteria and yeasts tested were detected in vitro by [18F]FPABA. Furthermore, [18F]FPABA was able to distinguish between inflammation and infection in the myositis mouse model (E. coli and Staphylococcus aureus) and could be used as a probe for a wide variety of bacterial and fungal species.

  • Preclinical safety of negatively charged microspheres (NCMs): Optimization of radiolabeling for in vivo and ex vivo biodistribution studies after topical administration on full-thickness wounds in a rat model
    María Collantes, Claudia Vairo, Álvaro Erhard, Cristina Navas, Silvia Villullas, Margarita Ecay, Félix Pareja, Gemma Quincoces, Garazi Gainza, and Iván Peñuelas

    Elsevier BV

  • Oral Immunogenicity of Enterotoxigenic Escherichia coli Outer Membrane Vesicles Encapsulated into Zein Nanoparticles Coated with a Gantrez® AN–Mannosamine Polymer Conjugate
    Melibea Berzosa, Alzbeta Nemeskalova, Alba Calvo, Gemma Quincoces, María Collantes, Felix Pareja, Carlos Gamazo, and Juan Manuel Irache

    MDPI AG
    Enterotoxigenic Escherichia coli (ETEC) represents a major cause of morbidity and mortality in the human population. In particular, ETEC infections affect children under the age of five from low-middle income countries. However, there is no licensed vaccine against this pathogen. ETEC vaccine development is challenging since this pathotype expresses a wide variety of antigenically diverse virulence factors whose genes can be modified due to ETEC genetic plasticity. To overcome this challenge, we propose the use of outer membrane vesicles (OMVs) isolated from two ETEC clinical strains. In these OMVs, proteomic studies revealed the presence of important immunogens, such as heat-labile toxin, colonization factors, adhesins and mucinases. Furthermore, these vesicles proved to be immunogenic after subcutaneous administration in BALB/c mice. Since ETEC is an enteropathogen, it is necessary to induce both systemic and mucosal immunity. For this purpose, the vesicles, free or encapsulated in zein nanoparticles coated with a Gantrez®–mannosamine conjugate, were administered orally. Biodistribution studies showed that the encapsulation of OMVs delayed the transit through the gut. These results were confirmed by in vivo study, in which OMV encapsulation resulted in higher levels of specific antibodies IgG2a. Further studies are needed to evaluate the protection efficacy of this vaccine approach.