Hydraulics, River engineering, sediment, hydrodynamics, artificial intelligent
18
Scopus Publications
Scopus Publications
In-depth simulation of rainfall–runoff relationships using machine learning methods Mehdi Fuladipanah, Alireza Shahhosseini, Namal Rathnayake, Hazi Md. Azamathulla, Upaka Rathnayake, D. P. P. Meddage, and Kiran Tota-Maharaj IWA Publishing ABSTRACT Measurement inaccuracies and the absence of precise parameters value in conceptual and analytical models pose challenges in simulating the rainfall–runoff modeling (RRM). Accurate prediction of water resources, especially in water scarcity conditions, plays a distinctive and pivotal role in decision-making within water resource management. The significance of machine learning models (MLMs) has become pronounced in addressing these issues. In this context, the forthcoming research endeavors to model the RRM utilizing four MLMs: Support Vector Machine, Gene Expression Programming (GEP), Multilayer Perceptron, and Multivariate Adaptive Regression Splines (MARS). The simulation was conducted within the Malwathu Oya watershed, employing a dataset comprising 4,765 daily observations spanning from July 18, 2005, to September 30, 2018, gathered from rainfall stations, and Kappachichiya hydrometric station. Of all input combinations, the model incorporating the input parameters Qt−1, Qt−2, and R̄t was identified as the optimal configuration among the considered alternatives. The models' performance was assessed through root mean square error (RMSE), mean average error (MAE), coefficient of determination (R2), and developed discrepancy ratio (DDR). The GEP model emerged as the superior choice, with corresponding index values (RMSE, MAE, R2, DDRmax) of (43.028, 9.991, 0.909, 0.736) during the training process and (40.561, 10.565, 0.832, 1.038) during the testing process.
Quantitative forecasting of bed sediment load in river engineering: an investigation into machine learning methodologies for complex phenomena Mehdi Fuladipanah, H. Md. Azamathulla, Ozgur Kisi, Mehdi Kouhdaragh, and Vishwandham Mandala IWA Publishing Abstract The intricate calculation of bed sediment load (BSL), which is influenced by hydraulic, hydrological, and sedimentary factors, is vital for informed decision-making in water resource management. Machine learning models, which are gaining popularity due to their accessibility and ability to reveal complex relationships, play a significant role in tackling these challenges. The efficacy of gene expression programming (GEP) models, support vector machines (SVMs), multi-layer perceptron (MLP), and multivariate adaptive regression splines (MARS) has been assessed through measured data of number 540 obtained from six rivers, namely Oak Creek, Nahal Yatir, Sagehen Creek, Elbow River, Jacoby River, and Goodwin Creek from 1954 to 1992. The assessment of model performance has been conducted utilizing root mean square error (RMSE), R2, Nash–Sutcliffe coefficient (NSE), and developed discrepancy ratio (DDR) as indices. Following data normalization within the range of 0–1, the data models underwent training and testing processes with a partition ratio of 80% for training and 20% for testing. Four dimensionless parameters, denoted as Fr = U/√gy, U/U*, Se, and ω = τU/γs√gyDs3, were employed as inputs in the models. The outcomes indicate that they exhibit superior performance compared to other methods, as evidenced by the following metrics in predicting BSL during the test stage: RMSE = 1.4088, NSE = 0.73054, R2 = 0.8729, and maximum QDDR(max) = 1.9564.
An in-depth comparative analysis of data-driven and classic regression models for scour depth prediction around cylindrical bridge piers Mehdi Fuladipanah, Mohammad Azamathulla Hazi, and Ozgur Kisi Springer Science and Business Media LLC AbstractThe study focuses on the critical concern of designing secure and resilient bridge piers, especially regarding scour phenomena. Traditional equations for estimating scour depth are limited, often leading to inaccuracies. To address these shortcomings, modern data-driven models (DDMs) have emerged. This research conducts a comprehensive comparison involving DDMs, including support vector machine (SVM), gene expression programming (GEP), multilayer perceptron (MLP), gradient boosting trees (GBT) and multivariate adaptive regression spline (MARS) models, against two regression equations for predicting scour depth around cylindrical bridge piers. Evaluation employs statistical indices, such as root-mean-square error (RMSE), coefficient of determination (R2), mean average error (MAE) and normalized discrepancy ratio (S(DDRmax)), to assess their predictive performance. A total of 455 datasets from previous research papers are employed for assessment. Dimensionless parameters Froude number $$\\left( {Fr = \\frac{U}{{\\sqrt {gy} }}} \\right)$$ F r = U gy , Pier Froude number $$Fr_{P} = \\frac{U}{{\\sqrt {g^{\\prime } D} }}$$ F r P = U g ′ D , and the ratio of scour depth to pier diameter $$(\\frac{\\text{y}}{{\\text{D}}})$$ ( y D ) are carefully selected as influential model inputs through dimensional analysis and the gamma test. The results highlight the superior performance of the SVM model. In the training phase, it exhibits an RMSE of 0.1009, MAE of 0.0726, R2 of 0.9401, and SDDR of 2.9237. During testing, the SVM model shows an RMSE of 0.023, MAE of 0.017, R2 of 0.984, and SDDR of 5.301. Additionally, it has an average error of − 0.065 and a total error of − 20.642 in the training set and an average error of − 0.005 and a total error of − 0.707 in the testing set. Conversely, the M5 model exhibits the lowest accuracy. The statistical metrics unequivocally establish the SVM model as significantly outperforming the experimental models, placing it in a higher echelon of predictive accuracy.
Using data mining methods to improve discharge coefficient prediction in Piano Key and Labyrinth weirs Mahdi Majedi-Asl, Mehdi Fuladipanah, Venkat Arun, and Ravi Prakash Tripathi IWA Publishing Abstract As a remarkable parameter, the discharge coefficient (Cd) plays an important role in determining weirs' passing capacity. In this research work, the support vector machine (SVM) and the gene expression programming (GEP) algorithms were assessed to predict Cd of piano key weir (PKW), rectangular labyrinth weir (RLW), and trapezoidal labyrinth weir (TLW) with gathered experimental data set. Using dimensional analysis, various combinations of hydraulic and geometric non-dimensional parameters were extracted to perform simulation. The superior model for the SVM and the GEP predictor for PKW, RLW, and TLW included , and respectively. The results showed that both algorithms are potential in predicting discharge coefficient, but the coefficient of determination (RMSE, R2, Cd(DDR)max) illustrated the superiority of the GEP performance over the SVM. The results of the sensitivity analysis determined the highest effective parameters for PKW, RLW, and TLW in predicting discharge coefficients are , , and Fr respectively.
In this paper, two groups of datasets including Froehlich (1988) and USGS were implemented to simulate scour depth for bridge piers of three shapes (circular, sharp-nose and rectangular) using support vector machine (SVM) algorithm. The results of the SVM were compared with gene expression programming (GEP) and the non-linear regression model. Independent parameters extracted using dimensional analysis were Froud number (Fr), the ratio of pier length to pier width (L/b), the ratio of sediment particle diameters (d50/d84), the ratio of sediment mean size to pier width (d50/b) and attack angle of water flow (α). Different combinations of independent variables were used to achieve optimum performance of the simulator. The results showed that among three simulators, the SVM algorithm had the best performance to predict local scour depth. The sensitivity analysis revealed that among independent parameters, the descending order of effectivity was Fr, sediment size, L/b, and α.
Hydrodynamic of river flow during a drought event (case study, Karoon River, Khuzestan, Iran)
Neural network for estimation of scour hole dimensions downstream of siphon spillway
Suspended load routing using artificial neural network and 1D fully coupled model (Case study: Ahwaz station, Karoon, Iran)
Hydrological based environmental flow assessment methods (Case study: Gharasou River, Ardabil)
Developing unit hydrograph using dark model (Case study: Poledoab catchment, Iran)
Application of the usbr equation for surveying balance of sediment yield in dez river branches in Iran Mehdi Fuladipanah and Ali Makvandi Politechnika Wroclawska Oficyna Wydawnicza Accurate determination of mean annual sediment load (MASL) of natural rivers will affect administrative aspects of water planning in dams. The MASL in Dez River in the southwest Iran has been considered. Sezar and Bakhtiari are its two branches. The amount of MASL was predicted by the USBR equation with three scenarios: using mean value of sediment discharge, using probabilistic classification of river flow data and using separation of wet and dry months. The results show that the USBR equation can be used to evaluate MASL in the Dez basin.