@dhhp.edu.vn
Faculty of Information Technology
Haiphong University, Haiphong, Vietnam
Dac-Nhuong Le (Lê Đắc Nhường) has a M.Sc. and Ph.D in computer science from Vietnam National University, Vietnam in 2009 and 2015, respectively. He is Associate Professor in Computer Science, Deputy-Head of Faculty of Information Technology, Haiphong University, Vietnam. Presently, he is also the Vice-Director of Information Technology Apply and Foreign Language Training Center in the same university.
He has a total academic teaching experience of 12 years with many publications in reputed international conferences, journals and online book chapter contributions (Indexed By: SCI, SCIE, SSCI, Scopus, ACM, DBLP). His area of research include: Soft computing, Network communication, security and vulnerability, network performance analysis and simulation, cloud computing, IoT and Image processing in biomedical.
His core work in network security, soft computing and IoT and image processing in biomedical. Recently, he has been the technique program committee, the technique reviews, the track chair for international conferences: FICTA 2014, CSI 2014, IC4SD 2015, ICICT 2015, INDIA 2015, IC3T 2015, INDIA 2016, FICTA 2016, ICDECT 2016, IUKM 2016, INDIA 2017, FICTA 2017, CISC 2017, ICICC 2018, ICCUT 2018, FICTA 2018 under Springer-ASIC/LNAI Series.
Presently, he is serving in the editorial board of international journals and he authored/edited 12 computer science books by Springer, Wiley, CRC Press.
website:
email: nhuongld@
Computer Science, Computer Networks and Communications
Risks and conflicts are subjective events that interfere with the development of software projects. Because risks and conflicts cannot be completely eliminated during the project schedule due to complexity arising from unique characteristics, variability, lack of data, structure, and deviation in prediction/estimation. Many different techniques and tools have been developed to support better project scheduling, but the quantification of risk factors and conflicts has not been adequately considered. In it, the most challenging problem is estimating the time and resources for each specific task in project scheduling. Most research on software project risk analysis focuses on finding the link between risk factors and project outcomes. The goal of risk and conflict management problems in software projects is to provide a multi-objective optimization plan to manage and minimize its level of damage. Therefore, it is almost impossible to find exact algorithms in polynomial time. Then, we need to consider the design of optimal algorithms with the best approximation to help accurately predict, quantify risks, conflicts, as well as their consequences, impact on the project from the critical process, is project planning.
Scopus Publications
Scholar Citations
Scholar h-index
Scholar i10-index
Swati, Menu Vijarania, Vivek Jaglan, and Dac‐Nhuong Le
Wiley
Swati, Meenu Vijarania, Akshat Agarwal, and Dac‐Nhuong Le
Wiley
Surjeet Dalal, Bijeta Seth, Vivek Jaglan, Meenakshi Malik, Surbhi, Neeraj Dahiya, Uma Rani, Dac-Nhuong Le, and Yu-Chen Hu
Springer Science and Business Media LLC
Arnab Dey, Samit Biswas, and Dac-Nhuong Le
Elsevier BV
Arnab Dey, Samit Biswas, and Dac-Nhuong Le
Tech Science Press
Pawan Singh, Ram Shringar Raw, and Dac-Nhuong Le
CRC Press
Ngoc-Khuong Nguyen, Dac-Nhuong Le, Viet-Ha Nguyen, and Anh-Cuong Le
Computers, Materials and Continua (Tech Science Press)
Arnab Dey, Samit Biswas, and Dac-Nhoung Le
The Science and Information Organization
—Human-Human Interaction Recognition (H2HIR) is a multidisciplinary field that combines computer vision, deep learning, and psychology. Its primary objective is to decode and understand the intricacies of human-human interactions. H2HIR holds significant importance across various domains as it enables machines to perceive, comprehend, and respond to human social behaviors, gestures, and communication patterns. This study aims to identify human-human interactions from just one frame, i.e. from an image. Diverging from the realm of video-based interaction recognition, a well-established research domain that relies on the utilization of spatio-temporal information, the complexity of the task escalates significantly when dealing with still images due to the absence of these intrinsic spatio-temporal features. This research introduces a novel deep learning model called AdaptiveDRNet with Multi-level Attention to recognize Human-Human (H2H) interactions. Our proposed method demonstrates outstanding performance on the Human-Human Interaction Image dataset (H2HID), encompassing 4049 meticulously curated images representing fifteen distinct human interactions and on the publicly accessible HII and HIIv2 related benchmark datasets. Notably, our proposed model excels with a validation accuracy of 97.20% in the classification of human-human interaction images, surpassing the performance of EfficientNet, InceptionResNetV2, NASNet Mobile, ConvXNet, ResNet50, and VGG-16 models. H2H interaction recognition’s significance lies in its capacity to enhance communication, improve decision-making, and ultimately contribute to the well-being and efficiency of individuals and society as a whole.
Akshaya Nidhi Bhati, Arun Kumar, Mehedi Masud, and Dac-Nhuong Le
CRC Press
Praveen Kumar Malik, Abdul Rahim, and Dac-Nhuong Le
Springer Nature Singapore
Vraj Parikh, Jainil Shah, Chintan Bhatt, Juan M Corchado, and Dac-Nhuong Le
Springer International Publishing
Abhishek Bhattacharya, Soumi Dutta, Mohammad Kamrul Hasan, Kusum Yadav, Dac-Nhuong Le, and Pastor Arguelles
Springer Nature Singapore