@up.poznan.pl
Associated Prosessor, Department of Biosystems Engineering
Poznan University of Life Scienes
Environmental Engineering, Waste Management and Disposal, Renewable Energy, Sustainability and the Environment, Pollution
Scopus Publications
Scholar Citations
Scholar h-index
Scholar i10-index
Bogusława Waliszewska, Hanna Waliszewska, Mieczysław Grzelak, Leszek Majchrzak, Eliza Gaweł, Maciej Murawski, Agnieszka Sieradzka, Iryna Vaskina, and Agnieszka Spek-Dźwigała
MDPI AG
Methane fermentation, which is one of the key processes in biogas production, plays an important role in the conversion of biomass to energy. During this process, changes occur in the chemical composition of organic feedstocks, including the chemical composition of grasses. The assessment of these changes is crucial for the efficiency and productivity of biogas production. The material for this study comprised fully mature grass blades with leaves and inflorescences and was collected from extensively used meadows and pastures, as well as cultivated and set-aside areas in the Wielkopolskie Voivodeship, the communes of Białośliwie and Trzcianka, Poland. The aim of this study was to compare methane fermentation efficiency in nine grass species and identify the biomass component involved in biogas production. The results indicate that the fermentation process, as expected, changed the cellulose content. The lignin content of the grasses before fermentation varied more than the cellulose content. The content of holocellulose (sum of carbohydrate components) in the grasses ranged from 59.77 to 72.93% before fermentation. Methane fermentation significantly reduced the carbohydrate content in the grasses, with a low degree of polymerization. Grassland biomass-based biogas production is a viable alternative to conventional fossil fuels.
Iryna Vaskina, Dmytro Hopkalo, Roman Vaskin, and Patrycja Pochwatka
Wydawnictwo Naukowe Gabriel Borowski (WNGB)
The energy potential of municipal solid waste landfills receded into the background compared to more traditional sources of energy. Such possibilities as landfill degassing, as well as extraction of thermal energy from the depths of landfills, were little-researched, due to being kind of risky phenomena for their wide application. Currently, the energy system of Ukraine is under the risk as due to the military actions – objects of critical energy infrastructure have become the easy targets for the enemy. About 53 mln m 3 of household waste were generated in Ukraine in 2021. Over 10 mln tons were buried at 6000 of landfills, total area of which accounts for 9000 hectares. The en - ergy potential of these waste was used ineffective. Only 28 landfills of total have the degassing system established. The case of using landfill gas as an energy source lies between such challenges: the increasing amount of MSW, proper waste management and the energy crisis in Ukraine caused by the shellings. Landfill spreading throughout the country makes it possible to operate safely and reduce the risk of bringing any significant damage to such infrastructure. The study was focused on the Sumy City landfill, the potential of which is estimated as 36397 m 3 /t of solid waste. The degassing system was designed based on the methodology of State building regulations of Ukraine. Analysis of the efficiency of the system was done, including the potential energy output as a result of operation of such a system which comes paramount in dealing with the imperative of soaring amount of MSW, reducing greenhouse gas emissions and producing green, cheap energy. The negative impact of MSW landfills on the environment is beyond all dispute so it is crucial that their potential be used at full capacity.
Karolina Migdał, Agnieszka Operacz, Iryna Vaskina, Paulina Śliz, Jorge Tavares, Adelaide Almeida, and Michał Migdał
Polish Academy of Sciences Chancellery
: The aim of the study was to model the operation of a wastewater treatment plant using the Monte Carlo method and selected probability distributions of random variables. Pollutant indices in treated wastewater were analysed, such as: biological oxygen demand ( BOD 5 ), chemical oxygen demand ( COD Cr ), total suspended solids ( TSS ), total nitrogen (N tot ), total phosphorus (P tot ). The preliminary analysis of pollution indicators series included the: calculation of descriptive statistics and assessment of biological degradability of wastewater. The consistency of the theoretical distributions with the empirical ones was assessed using Anderson–Darling statistics. The best-fitting statistical distributions were selected using the percent bias criterion. Based on the calculations performed, it was found that the analysed indicators of pollution in treated wastewater were characterised by an average variability of composition for BOD 5 , COD Cr and TSS , and a high variability of composition for N tot and P tot . The best fitted distribution was log-normal for BOD 5 , TSS , N tot and P tot and general extreme values for COD Cr . The simulation carried out using the Monte-Carlo method confirmed that there may be problems associated with the reduction of nutrients (N tot and P tot ) the analysed wastewater treatment plant. Results of values obtained of the risk values of negative control of wastewater treatment plant operation for biogenic compounds, different from 1, indicate that the number of exceedances at the outflow may be higher than the acceptable one.
Ihor Roi, Iryna Vaskina, Krzysztof Jozwiakowski, Roman Vaskin, and Ivan Kozii
Springer International Publishing
Iryna Vaskina, Ihor Roi, Leonid Plyatsuk, Roman Vaskin, and Olena Yakhnenko
Wydawnictwo Naukowe Gabriel Borowski (WNGB)
The main problem of widespread introduction of magnetic water treatment (MWT) in the processes of water and wastewater treatment is the lack of modern research aimed at studying the mechanisms of MWT effects, in particular the influence on the physicochemical properties of aqueous solutions. This study explains the effect of MWT taking into account the physical and chemical properties of aqueous solutions due to the presence of the quantum differences in water molecules. All of the MWT effects are related to the change in the physicochemical properties of aqueous solutions. It is due to the presence of two types of water molecule isomers and their librational oscillations. The result of MWT is a violation of the synchronism of para-isomers vibrations, with the subsequent destruction of ice-like structures due to the receiving of energy from collisions with other water molecules (ortho-isomers). One of the most important MWT effects includes the change in the nature and speed of the physicochemical processes in aqueous solutions by increasing the number of more physically and chemically active ortho-isomers. The MWT parameters specified in the work allow explaining the nature of most MWT effects and require developing the scientific and methodological principles for the implementation of the MWT process and mathematical modeling of the MWT process in the water and wastewater treatment. It can be used in the design of the MWT devices taking into account the constructive and mode parameters of MWT devices.
Iryna Vaskina, Leonid Plyatsuk, Roman Vaskin, Iryna Ablieieva, and Serhii Sydorenko
Springer International Publishing