Joao Pedro Marques

@universite-paris-saclay.fr

40

Scopus Publications

Scopus Publications

  • Modeling of two CoRoT solar analogues constrained by seismic and spectroscopic analysis
    M Castro, F Baudin, O Benomar, R Samadi, T Morel, C Barban, J D do Nascimento, Y Lebreton, P Boumier, J P Marques,et al.

    Oxford University Press (OUP)
    ABSTRACT Solar analogues are important stars to study for understanding the properties of the Sun. Combined with seismic and spectroscopic analysis, evolutionary modelling becomes a powerful method to characterize stellar intrinsic parameters, such as mass, radius, metallicity and age. However, these characteristics, relevant for other aspects of astrophysics or exoplanetary system physics, for example, are difficult to obtain with high precision and/or accuracy. The goal of this study is to characterize the two solar analogues, HD 42618 and HD 43587, observed by CoRoT. In particular, we aim to infer their precise mass, radius and age, using evolutionary modelling constrained by spectroscopic, photometric and seismic analysis. These stars show evidence of being older than the Sun but with a relatively large lithium abundance. We present the seismic analysis of HD 42618, and the modelling of the two solar analogues, HD 42618 and HD 43587 using the cestam stellar evolution code. Models were computed to reproduce the spectroscopic (effective temperature and metallicity) and seismic (mode frequency) data, and the luminosity of the stars, based on Gaia parallaxes. We infer very similar values of mass and radius for both stars compared with the literature, within the uncertainties, and we reproduce correctly the seismic constraints. The modelling shows that HD 42618 is slightly less massive and older than the Sun, and that HD 43587 is more massive and older than the Sun, in agreement with previous results. The use of chemical clocks improves the reliability of our age estimates.

  • Analysis of eclipsing binaries in multiple stellar systems: The case of V1200 Centauri
    F Marcadon, K G Hełminiak, J P Marques, R Pawłaszek, P Sybilski, S K Kozłowski, M Ratajczak, and M Konacki

    Oxford University Press (OUP)
    ABSTRACT We present a new analysis of the multiple-star V1200 Centauri based on the most recent observations for this system. We used the photometric observations from the Solaris network and the Transiting Exoplanet Survey Satellite telescope, combined with the new radial velocities from the CHIRON spectrograph and those published in the literature. We confirmed that V1200 Cen consists of a 2.5-d eclipsing binary orbited by a third body. We derived the parameters of the eclipsing components, which are $M_{\\mathrm{ Aa}} = 1.393\\pm 0.018\\,$M⊙, $R_{\\mathrm{ Aa}} = 1.407\\pm 0.014\\,$R⊙, and $T_{{\\rm eff},\\mathrm{ Aa}} = 6588\\pm 58\\,$K for the primary, and $M_{\\mathrm{ Ab}} = 0.8633\\pm 0.0081\\,$M⊙, $R_{\\mathrm{ Ab}} = 1.154\\pm 0.014\\,$R⊙, and $T_{{\\rm eff},\\mathrm{ Ab}} = 4475\\pm 68\\,$K for the secondary. Regarding the third body, we obtained significantly different results than those previously published. The period of the outer orbit is found to be 180.4 d, implying a minimum mass of $M_\\mathrm{ B} = 0.871\\pm 0.020\\,$M⊙. Thus, we argue that V1200 Cen is a quadruple system with a secondary pair composed of two low-mass stars. Finally, we determined the ages of each eclipsing component using two evolution codes, namely mesa and cestam. We obtained ages of 16–18.5 and 5.5–7 Myr for the primary and the secondary, respectively. In particular, the secondary appears larger and hotter than that predicted at the age of the primary. We concluded that dynamical and tidal interactions occurring in multiples may alter the stellar properties and explain the apparent non-coevality of V1200 Centauri.

  • Chemical mixing in low mass stars: I. Rotation against atomic diffusion including radiative acceleration
    M. Deal, M.-J. Goupil, J. P. Marques, D. R. Reese, and Y. Lebreton

    EDP Sciences
    Context. When modelling stars with masses higher than 1.2 M⊙ with no observed chemical peculiarity, atomic diffusion is often neglected because, on its own, it causes unrealistic surface abundances compared with those observed. The reality is that atomic diffusion is in competition with other transport processes. Rotation is one of the processes able to prevent excessively strong surface abundance variations. Aims. The purpose of this study is to quantify the opposite or conjugated effects of atomic diffusion (including radiative acceleration) and rotationally induced mixing in stellar models of low mass stars, and to assess whether rotational mixing is able to prevent the strong abundance variations induced by atomic diffusion in F-type stars. Our second goal is to estimate the impact of neglecting both rotational mixing and atomic diffusion in stellar parameter inferences for stars with masses higher than 1.3 M⊙. Methods. Using the Asteroseismic Inference on a Massive Scale (AIMS) stellar parameter inference code, we infer the masses and ages of a set of representative artificial stars for which models were computed with the Code d’Evolution Stellaire Adaptatif et Modulaire (CESTAM; the T stands for Transport) evolution code, taking into account rotationally induced mixing and atomic diffusion, including radiative acceleration. The observed constraints are asteroseismic and classical properties. The grid of stellar models used for the optimization search include neither atomic diffusion nor rotationally induced mixing. The differences between real and retrieved parameters then provide an estimate of the errors made when neglecting transport processes in stellar parameter inference. Results. We show that for masses lower than 1.3 M⊙, rotation dominates the transport of chemical elements and strongly reduces the effect of atomic diffusion, with net surface abundance modifications similar to solar values. At higher mass, atomic diffusion and rotation are competing equally. Above 1.44 M⊙, atomic diffusion dominates in stellar models with initial rotation lower than 80 km s−1 producing a chemical peculiarity which is not observed in Kepler Legacy stars. This indicates that a transport process of chemical elements is missing, probably linked to the missing transport process of angular momentum needed to explain rotation profiles in solar-like stars. Importantly, neglecting rotation and atomic diffusion (including radiative acceleration) in the models, when inferring the parameters of F-type stars, may lead to respective errors of ≈5%, ≈2.5%, and ≈25% for stellar masses, radii, and ages. Conclusions. Atomic diffusion (including radiative acceleration) and rotational mixing should be taken into account in stellar models in order to determine accurate stellar parameters. When atomic diffusion and shellular rotation are both included, they enable stellar evolution codes to reproduce the observed metal and helium surface abundances for stars with masses up to 1.4 M⊙ at solar metallicity. However, if rotation is actually uniform for these stars (as observations seem to indicate), then an additional chemical mixing process is needed together with a revised formulation of rotational mixing. For higher masses, an additional mixing process is needed in any case.

  • γ Doradus stars as a test of angular momentum transport models
    R.-M. Ouazzani, J. P. Marques, M.-J. Goupil, S. Christophe, V. Antoci, S. J. A. J. Salmon, and J. Ballot

    EDP Sciences
    Helioseismology and asteroseismology of red giant stars have shown that distribution of angular momentum in stellar interiors, and the evolution of this distribution with time remains an open issue in stellar physics. Owing to the unprecedented quality and long baseline of Kepler photometry, we are able to seismically infer internal rotation rates in γ Doradus stars, which provide the main-sequence counterpart to the red-giants puzzle. Here, we confront these internal rotation rates to stellar evolution models which account for rotationally induced transport of angular momentum, in order to test angular momentum transport mechanisms. On the one hand, we used a stellar model-independent method developed by our team in order to obtain accurate, seismically inferred, buoyancy radii and near-core rotation for 37 γ Doradus stars observed by Kepler. We show that the stellar buoyancy radius can be used as a reliable evolution indicator for field stars on the main sequence. On the other hand, we computed rotating evolutionary models of intermediate-mass stars including internal transport of angular momentum in radiative zones, following the formalism developed in the series of papers started by Zahn (1992, A&A, 265, 115), with the CESTAM code. This code calculates the rotational history of stars from the birth line to the tip of the RGB. The initial angular momentum content has to be set initially, which is done here by fitting rotation periods in young stellar clusters. We show a clear disagreement between the near-core rotation rates measured in the sample and the rotation rates obtained from the evolutionary models including rotationally induced transport of angular momentum following Zahn’s prescriptions. These results show a disagreement similar to that of the Sun and red giant stars in the considered mass range. This suggests the existence of missing mechanisms responsible for the braking of the core before and along the main sequence. The efficiency of the missing mechanisms is investigated. The transport of angular momentum as formalized by Zahn and Maeder cannot explain the measurements of near-core rotation in main-sequence intermediate-mass stars we have at hand.

  • Building protoplanetary disks from the molecular cloud: Redefining the disk timeline
    K. Baillié, J. Marques, and L. Piau

    EDP Sciences
    Context. Planetary formation models are necessary to understand the characteristics of the planets that are the most likely to survive. Their dynamics, their composition and even the probability of their survival depend on the environment in which they form. We therefore investigate the most favorable locations for planetary embryos to accumulate in the protoplanetary disk: the planet traps. Aims. We study the formation of the protoplanetary disk by the collapse of a primordial molecular cloud, and how its evolution leads to the selection of specific types of planets. Methods. We use a hydrodynamical code that accounts for the dynamics, thermodynamics, geometry and composition of the disk to numerically model its evolution as it is fed by the infalling cloud material. As the mass accretion rate of the disk onto the star determines its growth, we can calculate the stellar characteristics by interpolating its radius, luminosity and temperature over the stellar mass from pre-calculated stellar evolution models. The density and midplane temperature of the disk then allow us to model the interactions between the disk and potential planets and determine their migration. Results. At the end of the collapse phase, when the disk reaches its maximum mass, it pursues its viscous spreading, similarly to the evolution from a minimum mass solar nebula (MMSN). In addition, we establish a timeline equivalence between the MMSN and a “collapse-formed disk” that would be older by about 2 Myr. Conclusions. We can save various types of planets from a fatal type-I inward migration: in particular, planetary embryos can avoid falling on the star by becoming trapped at the heat transition barriers and at most sublimation lines (except the silicates one). One of the novelties concerns the possible trapping of putative giant planets around a few astronomical units from the star around the end of the infall. Moreover, trapped planets may still follow the traps outward during the collapse phase and inward after it. Finally, this protoplanetary disk formation model shows the early possibilities of trapping planetary embryos at disk stages that are anterior by a few million years to the initial state of the MMSN approximation.

  • Influence of metallicity on the near-surface effect on oscillation frequencies
    L. Manchon, K. Belkacem, R. Samadi, T. Sonoi, J. P. C. Marques, H.-G. Ludwig, and E. Caffau

    EDP Sciences
    Context. The CoRoT and Kepler missions have provided high-quality measurements of the frequency spectra of solar-like pulsators, enabling us to probe stellar interiors with a very high degree of accuracy by comparing the observed and modelled frequencies. However, the frequencies computed with 1D models suffer from systematic errors related to the poor modelling of the uppermost layers of stars. These biases are what is commonly named the near-surface effect. The dominant effect is thought to be related to the turbulent pressure that modifies the hydrostatic equilibrium and thus the frequencies. This has already been investigated using grids of 3D hydrodynamical simulations, which also were used to constrain the parameters of the empirical correction models. However, the effect of metallicity has not been considered so far. Aims. We aim to study the impact of metallicity on the surface effect, investigating its influence across the Hertzsprung-Russell diagram, and providing a method for accounting for it when using the empirical correction models. Methods. We computed a grid of patched 1D stellar models with the stellar evolution code CESTAM in which poorly modelled surface layers have been replaced by averaged stratification computed with the 3D hydrodynamical code CO5BOLD. It allowed us to investigate the dependence of both the surface effect and the empirical correction functions on the metallicity. Results. We found that metallicity has a strong impact on the surface effect: keeping Teff and log g constant, the frequency residuals can vary by up to a factor of two (for instance from [Fe/H] = + 0.0 to [Fe/H] = + 0.5). Therefore, the influence of metallicity cannot be neglected. We found that the correct way of accounting for it is to consider the surface Rosseland mean opacity. It allowed us to give a physically grounded justification as well as a scaling relation for the frequency differences at νmax as a function of Teff, log g and κ. Finally, we provide prescriptions for the fitting parameters of the most commonly used correction functions. Conclusions. We show that the impact of metallicity through the Rosseland mean opacity must be taken into account when studying and correcting the surface effect.

  • Impacts of radiative accelerations on solar-like oscillating main-sequence stars
    M. Deal, G. Alecian, Y. Lebreton, M. J. Goupil, J. P. Marques, F. LeBlanc, P. Morel, and B. Pichon

    EDP Sciences
    Context. Chemical element transport processes are among the crucial physical processes needed for precise stellar modelling. Atomic diffusion by gravitational settling is usually taken into account, and is essential for helioseismic studies. On the other hand, radiative accelerations are rarely accounted for, act differently on the various chemical elements, and can strongly counteract gravity in some stellar mass domains. The resulting variations in the abundance profiles may significantly affect the structure of the star.Aims. The aim of this study is to determine whether radiative accelerations impact the structure of solar-like oscillating main-sequence stars observed by asteroseismic space missions.Methods. We implemented the calculation of radiative accelerations operating on C, N, O, Ne, Na, Mg, Al, Si, S, Ca, and Fe in the CESTAM code using the single-valued parameter method. We built and compared several grids of stellar models including gravitational settling, some with and others without radiative accelerations. We considered masses in the range [0.9, 1.5]M⊙and three values of the metallicity around the solar value. For each metallicity we determined the mass range where differences between models due to radiative accelerations exceed the uncertainties of global seismic parameters of theKeplerLegacy sample or expected for PLATO observations.Results. We found that radiative accelerations may not be neglected for stellar masses higher than 1.1M⊙at solar metallicity. The difference in age due to their inclusion in models can reach 9% for the more massive stars of our grids. We estimated that the percentage of the PLATO core program stars whose modelling would require radiative accelerations ranges between 33% and 58% depending on the precision of the seismic data.Conclusions. We conclude that in the context ofKepler, TESS, and PLATO missions which provide (or will provide) high-quality seismic data, radiative accelerations can have a significant effect when properly inferring the properties of solar-like oscillators. This is particularly important for age inferences. However, the net effect for each individual star results from the competition between atomic diffusion including radiative accelerations and other internal transport processes. Rotationally induced transport processes for instance are believed to reduce the effects of atomic diffusion. This will be investigated in a forthcoming companion paper.

  • Asteroseismic and orbital analysis of the triple star system HD 188753 observed by Kepler
    F. Marcadon, T. Appourchaux, and J. P. Marques

    EDP Sciences
    Context. The NASA Kepler space telescope has detected solar-like oscillations in several hundreds of single stars, thereby providing a way to determine precise stellar parameters using asteroseismology. Aims. In this work, we aim to derive the fundamental parameters of a close triple star system, HD 188753, for which asteroseismic and astrometric observations allow independent measurements of stellar masses. Methods. We used six months of Kepler photometry available for HD 188753 to detect the oscillation envelopes of the two brightest stars. For each star, we extracted the individual mode frequencies by fitting the power spectrum using a maximum likelihood estimation approach. We then derived initial guesses of the stellar masses and ages based on two seismic parameters and on a characteristic frequency ratio, and modelled the two components independently with the stellar evolution code CESTAM. In addition, we derived the masses of the three stars by applying a Bayesian analysis to the position and radial-velocity measurements of the system. Results. Based on stellar modelling, the mean common age of the system is 10.8 ± 0.2 Gyr and the masses of the two seismic components are MA = 0.99 ± 0.01 M⊙ and MBa = 0.86 ± 0.01 M⊙. From the mass ratio of the close pair, MBb/MBa = 0.767 ± 0.006, the mass of the faintest star is MBb = 0.66 ± 0.01 M⊙ and the total seismic mass of the system is then Msyst = 2.51 ± 0.02 M⊙. This value agrees perfectly with the total mass derived from our orbital analysis, Msyst = 2.51−0.18+0.20 M⊙, and leads to the best current estimate of the parallax for the system, π = 21.9 ± 0.2 mas. In addition, the minimal relative inclination between the inner and outer orbits is 10.9° ± 1.5°, implying that the system does not have a coplanar configuration.

  • Can plume-induced internal gravity waves regulate the core rotation of subgiant stars?
    C. Pinçon, K. Belkacem, M. J. Goupil, and J. P. Marques

    EDP Sciences
    Context.The seismic data provided by the space-borne missions CoRoT andKeplerenabled us to probe the internal rotation of thousands of evolved low-mass stars. Subsequently, several studies showed that current stellar evolution codes are unable to reproduce the low core rotation rates observed in these stars. These results indicate that an additional angular momentum transport process is necessary to counteract the spin up due to the core contraction during the post-main sequence evolution. For several candidates, the transport induced by internal gravity waves (IGW) could play a non-negligible role.Aims.We aim to investigate the effect of IGW generated by penetrative convection on the internal rotation of low-mass stars from the subgiant branch to the beginning of the red giant branch.Methods.A semi-analytical excitation model was used to estimate the angular momentum wave flux. The characteristic timescale associated with the angular momentum transport by IGW was computed and compared to the contraction timescale throughout the radiative region of stellar models at different evolutionary stages.Results.We show that IGW can efficiently counteract the contraction-driven spin up of the core of subgiant stars if the amplitude of the radial-differential rotation (between the center of the star and the top of the radiative zone) is higher than a threshold value. This threshold depends on the evolutionary stage and is comparable to the differential rotation rates inferred for a sample of subgiant stars observed by the satelliteKepler. Such an agreement can therefore be interpreted as the consequence of a regulation mechanism driven by IGW. This result is obtained under the assumption of a smooth rotation profile in the radiative region and holds true even if a wide range of values is considered for the parameters of the generation model. In contrast, on the red giant branch, we find that IGW remain insufficient, on their own, to explain the observations because of an excessive radiative damping.Conclusions.IGW generated by penetrative convection are able to efficiently extract angular momentum from the core of stars on the subgiant branch and accordingly have to be taken into account. Moreover, agreements with the observations reinforce the idea that their effect is essential to regulate the amplitude of the radial-differential rotation in subgiant stars. On the red giant branch, another transport mechanism must likely be invoked.

  • Kepler observations of the asteroseismic binary HD 176465
    T. R. White, O. Benomar, V. Silva Aguirre, W. H. Ball, T. R. Bedding, W. J. Chaplin, J. Christensen-Dalsgaard, R. A. Garcia, L. Gizon, D. Stello,et al.

    EDP Sciences
    Binary star systems are important for understanding stellar structure and evolution, and are especially useful when oscillations can be detected and analysed with asteroseismology. However, only four systems are known in which solar-like oscillations are detected in both components. Here, we analyse the fifth such system, HD 176465, which was observed by Kepler . We carefully analysed the system’s power spectrum to measure individual mode frequencies, adapting our methods where necessary to accommodate the fact that both stars oscillate in a similar frequency range. We also modelled the two stars independently by fitting stellar models to the frequencies and complementaryparameters. We are able to cleanly separate the oscillation modes in both systems. The stellar models produce compatible ages and initial compositions for the stars, as is expected from their common and contemporaneous origin. Combining the individual ages, the system is about 3.0 ± 0.5 Gyr old. The two components of HD 176465 are young physically-similar oscillating solar analogues, the first such system to be found, and provide important constraints for stellar evolution and asteroseismology.

  • Angular momentum redistribution by mixed modes in evolved low-mass stars: I. Theoretical formalism
    K. Belkacem, J. P. Marques, M. J. Goupil, T. Sonoi, R. M. Ouazzani, M. A. Dupret, S. Mathis, B. Mosser, and M. Grosjean

    EDP Sciences
    The detection of mixed modes in subgiants and red giants by the CoRoT and Kepler space-borne missions allows us to investigate the internal structure of evolved low-mass stars, from the end of the main sequence to the central helium-burning phase. In particular, the measurement of the mean core rotation rate as a function of the evolution places stringent constraints on the physical mechanisms responsible for the angular momentum redistribution in stars. It showed that the current stellar evolution codes including the modelling of rotation fail to reproduce the observations. An additional physical process that efficiently extracts angular momentum from the core is thus necessary. Our aim is to assess the ability of mixed modes to do this. To this end, we developed a formalism that provides a modelling of the wave fluxes in both the mean angular momentum and the mean energy equations in a companion paper. In this article, mode amplitudes are modelled based on recent asteroseismic observations, and a quantitative estimate of the angular momentum transfer is obtained. This is performed for a benchmark model of 1.3 M⊙ at three evolutionary stages, representative of the evolved pulsating stars observed by CoRoT and Kepler. We show that mixed modes extract angular momentum from the innermost regions of subgiants and red giants. However, this transport of angular momentum from the core is unlikely to counterbalance the effect of the core contraction in subgiants and early red giants. In contrast, for more evolved red giants, mixed modes are found efficient enough to balance and exceed the effect of the core contraction, in particular in the hydrogen-burning shell. Our results thus indicate that mixed modes are a promising candidate to explain the observed spin-down of the core of evolved red giants, but that an other mechanism is to be invoked for subgiants and early red giants.

  • Angular momentum redistribution by mixed modes in evolved low-mass stars: II. Spin-down of the core of red giants induced by mixed modes
    K. Belkacem, J. P. Marques, M. J. Goupil, B. Mosser, T. Sonoi, R. M. Ouazzani, M. A. Dupret, S. Mathis, and M. Grosjean

    EDP Sciences
    The detection of mixed modes in subgiants and red giants by the CoRoT and \\emph{Kepler} space-borne missions allows us to investigate the internal structure of evolved low-mass stars. In particular, the measurement of the mean core rotation rate as a function of the evolution places stringent constraints on the physical mechanisms responsible for the angular momentum redistribution in stars. It showed that the current stellar evolution codes including the modelling of rotation fail to reproduce the observations. An additional physical process that efficiently extracts angular momentum from the core is thus necessary. Our aim is to assess the ability of mixed modes to do this. To this end, we developed a formalism that provides a modelling of the wave fluxes in both the mean angular momentum and the mean energy equations in a companion paper. In this article, mode amplitudes are modelled based on recent asteroseismic observations, and a quantitative estimate of the angular momentum transfer is obtained. This is performed for a benchmark model of 1.3 $M_{\\odot}$ at three evolutionary stages, representative of the evolved pulsating stars observed by CoRoT and Kepler. We show that mixed modes extract angular momentum from the innermost regions of subgiants and red giants. However, this transport of angular momentum from the core is unlikely to counterbalance the effect of the core contraction in subgiants and early red giants. In contrast, for more evolved red giants, mixed modes are found efficient enough to balance and exceed the effect of the core contraction, in particular in the hydrogen-burning shell. Our results thus indicate that mixed modes are a promising candidate to explain the observed spin-down of the core of evolved red giants, but that an other mechanism is to be invoked for subgiants and early red giants.

  • The PLATO 2.0 mission
    H. Rauer, C. Catala, C. Aerts, T. Appourchaux, W. Benz, A. Brandeker, J. Christensen-Dalsgaard, M. Deleuil, L. Gizon, M.-J. Goupil,et al.

    Springer Science and Business Media LLC

  • On the mass estimation for FGK stars: Comparison of several methods
    F. J. G. Pinheiro, J. M. Fernandes, M. S. Cunha, M. J. P. F. G. Monteiro, N. C. Santos, S. G. Sousa, J. P. Marques, J.-J. Fang, A. Mortier, and J. Sousa

    Oxford University Press (OUP)
    Stellar evolutionary models simulate well binary stars when individual stellar mass and system metallicity are known. The mass can be derived directly from observations only in the case of multiple stellar systems, mainly binaries. Yet, the number of such stars for which accurate stellar masses are available is rather small. The main goal of this project is to provide realistic mass estimates for a homogeneous sample of about a thousand FGK single stars, using four different methods and techniques. We present the masses inferred according to each one of these methods as well as a final mass estimate consisting in the median of the four mass estimates. The procedures evaluated here include the use of stellar evolutionary models, mass– luminosity relation and surface gravity spectroscopic observations. By combining the results obtained with different methods, we determine the best mass value for each individual star, as well as the associated error budget. Our results confirm the expected consistency between the different mass estimation methods. None the less, for masses above 1.2 M� , the spectroscopic surface gravities seem to overestimate the mass. This result may be a consequence of the spectroscopic surface gravities used in this analysis. Nevertheless, this problem is minimized by the fact that we have several approaches available for deriving stellar masses. Moreover, we suggest an empirical procedure to overcome this issue.

  • Transport of angular momentum in solar-like oscillating stars
    Mariejo Goupil, Sébastien Deheuvels, Joao Marques, Yveline Lebreton, Benoit Mosser, Rafa García, Kevin Belkacem, and Stéphane Mathis

    Cambridge University Press (CUP)
    AbstractOur current understanding and modeling of angular momentum transport in low-mass stars are briefly reviewed. Emphasis is set on single stars slightly younger that the Sun and on subgiants and red giants observed by the space missionsCoRoTandKepler.

  • Precise and accurate interpolated stellar oscillation frequencies on the main sequence
    Warrick H. Ball, Jesper Schou, Laurent Gizon, and João P. C. Marques

    Cambridge University Press (CUP)
    AbstractHigh-quality data from space-based observatories present an opportunity to fit stellar models to observations of individually-identified oscillation frequencies, not just the large and small frequency separations. But such fits require the evaluation of a large number of accurate stellar models, which remains expensive. Here, we show that global-mode oscillation frequencies interpolated in a grid of stellar models are precise and accurate, at least in the neighbourhood of a solar model.

  • Asteroseismic fundamental properties of solar-type stars observed by the NASA Kepler mission
    W. J. Chaplin, S. Basu, D. Huber, A. Serenelli, L. Casagrande, V. Silva Aguirre, W. H. Ball, O. L. Creevey, L. Gizon, R. Handberg,et al.

    American Astronomical Society
    We use asteroseismic data obtained by the NASA Kepler mission to estimate the fundamental properties of more than 500 main-sequence and sub-giant stars. Data obtained during the first 10 months of Kepler science operations were used for this work, when these solar-type targets were observed for one month each in survey mode. Stellar properties have been estimated using two global asteroseismic parameters and complementary photometric and spectroscopic data. Homogeneous sets of effective temperatures, Teff, were available for the entire ensemble from complementary photometry; spectroscopic estimates of Teff and [Fe/H] were available from a homogeneous analysis of ground-based data on a subset of 87 stars. We adopt a grid-based analysis, coupling six pipeline codes to 11 stellar evolutionary grids. Through use of these different grid-pipeline combinations we allow implicitly for the impact on the results of stellar model dependencies from commonly used grids, and differences in adopted pipeline methodologies. By using just two global parameters as the seismic inputs we are able to perform a homogenous analysis of all solar-type stars in the asteroseismic cohort, including many targets for which it would not be possible to provide robust estimates of individual oscillation frequencies (due to a combination of low signal-to-noise ratio and short dataset lengths). The median final quoted uncertainties from consolidation of the grid-based analyses are for the full ensemble (spectroscopic subset) approximately 10.8% (5.4%) in mass, 4.4% (2.2%) in radius, 0.017 dex (0.010 dex) in log  g, and 4.3% (2.8%) in mean density. Around 36% (57%) of the stars have final age uncertainties smaller than 1 Gyr. These ages will be useful for ensemble studies, but should be treated carefully on a star-by-star basis. Future analyses using individual oscillation frequencies will offer significant improvements on up to 150 stars, in particular for estimates of the ages, where having the individual frequency data is most important.

  • Red giants rotational splittings
    R.M. Ouazzani, M.J. Goupil, M.A. Dupret, and J.P. Marques

    EDP Sciences
    The space missions CoRoT and Kepler provide high quality data that allow to test the transport of angular momentum in stars by the seismic determination of the internal rotation profile. Our aim is to test the validity of the seismic diagnostics for red giant rotation that are based on a perturbative method and to investigate the oscillation spectra when the validity does not hold. We use a non-perturbative approach implemented in the ACOR code (1) that accounts for the effect of rotation on pulsations, and solves the pulsations eigenproblem directly for dipolar oscillation modes. We find that the limit of the perturbation to first order can be expressed in terms of the core rotation and the period separation between consecutive dipolar modes. Above this limit, each family of modes with different azimuthal symmetry m ,h as to be considered separately. For rapidly rotating red giants, new seismic diagnostics can be found for rotation by exploiting the differences between the period spacings associated with each m-family of modes.

  • Mode lifetime and associated scaling relations
    K. Belkacem, T. Appourchaux, F. Baudin, M.A. Dupret, M.J. Goupil, J.P. Marques, A. Noels, and R. Samadi

    EDP Sciences
    Thanks to the CoRoT and Kepler spacecrafts, scaling relations (linking seismic indices and global stellar parameters) are becoming the cornerstone of ensemble asteroseismology. Among them, the relation between the cut-off frequency and the frequency of the maximum in the power spectrum of solar-like pulsators as well as the relation between mode lifetime and the effective temperature remain poorly understood. However, a solid theoretical background is essential to assess the accuracy of those relations and subsequently of the derived stellar parameters. We will thus present recent advances on the understanding of the underlying mechanisms governing those relations and show that the physics of mode lifetime (thus of mode damping) plays a major role.

  • The influence of initial conditions on stellar rotation history
    J. P. Marques and M. J. Goupil

    Springer Berlin Heidelberg

  • Seismic diagnostics for transport of angular momentum in stars: I. Rotational splittings from the pre-main sequence to the red-giant branch
    J. P. Marques, M. J. Goupil, Y. Lebreton, S. Talon, A. Palacios, K. Belkacem, R.-M. Ouazzani, B. Mosser, A. Moya, P. Morel,et al.

    EDP Sciences
    Context. Rotational splittings are currently measured for several main sequence stars and a large number of red giants with the space mission Kepler. This will provide stringent constraints on rotation profiles. Aims: Our aim is to obtain seismic constraints on the internal transport and surface loss of the angular momentum of oscillating solar-like stars. To this end, we study the evolution of rotational splittings from the pre-main sequence to the red-giant branch for stochastically excited oscillation modes. Methods: We modified the evolutionary code CESAM2K to take rotationally induced transport in radiative zones into account. Linear rotational splittings were computed for a sequence of 1.3 Ms models. Rotation profiles were derived from our evolutionary models and eigenfunctions from linear adiabatic oscillation calculations. Results: We find that transport by meridional circulation and shear turbulence yields far too high a core rotation rate for red-giant models compared with recent seismic observations. We discuss several uncertainties in the physical description of stars that could have an impact on the rotation profiles. For instance, we find that the Goldreich-Schubert-Fricke instability does not extract enough angular momentum from the core to account for the discrepancy. In contrast, an increase of the horizontal turbulent viscosity by 2 orders of magnitude is able to significantly decrease the central rotation rate on the red-giant branch. Conclusions: Our results indicate that it is possible that the prescription for the horizontal turbulent viscosity largely underestimates its actual value or else a mechanism not included in current stellar models of low mass stars is needed to slow down the rotation in the radiative core of red-giant stars.

  • Seismic diagnostics for transport of angular momentum in stars : II. Interpreting observed rotational splittings of slowly rotating red giant stars
    M. J. Goupil, B. Mosser, J. P. Marques, R. M. Ouazzani, K. Belkacem, Y. Lebreton, and R. Samadi

    EDP Sciences
    Asteroseismology with the space-borne missions CoRoT and Kepler provides a powerful mean of testing the modeling of transport processes in stars. Rotational splittings are currently measured for a large number of red giant stars and can provide stringent constraints on the rotation profiles. The aim of this paper is to obtain a theoretical framework for understanding the properties of the observed rotational splittings of red giant stars with slowly rotating cores. This allows us to establish appropriate seismic diagnostics for rotation of these evolved stars. Rotational splittings for stochastically excited dipolar modes are computed adopting a first-order perturbative approach for two $1.3 M_\\odot$ benchmark models assuming slowly rotating cores. For red giant stars with slowly rotating cores, we show that the variation of the rotational splittings of $\\ell=1$ modes with frequency depends only on the large frequency separation, the g-mode period spacing, and the ratio of the average envelope to core rotation rates (${\\cal R}$). This leds us to propose a way to infer directly ${\\cal R}$ from the observations. This method is validated using the Kepler red giant star KIC 5356201. Finally, we provide a theoretical support for the use of a Lorentzian profile to measure the observed splittings for red giant stars.

  • Spin down of the core rotation in red giants
    B. Mosser, M. J. Goupil, K. Belkacem, J. P. Marques, P. G. Beck, S. Bloemen, J. De Ridder, C. Barban, S. Deheuvels, Y. Elsworth,et al.

    EDP Sciences
    Context. The space mission Kepler provides us with long and uninterrupted photometric time series of red giants. We are now able to probe the rotational behaviour in their deep interiors using the observations of mixed modes. Aims. We aim to measure the rotational splittings in red giants and to derive scaling relations for rotation related to seismic and fundamental stellar parameters. Methods. We have developed a dedicated method for automated measurements of the rotational splittings in a large number of red giants. Ensemble asteroseismology, namely the examination of a large number of red giants at different stages of their evolution, allows us to derive global information on stellar evolution. Results. We have measured rotational splittings in a sample of about 300 red giants. We have also shown that these splittings are dominated by the core rotation. Under the assumption that a linear analysis can provide the rotational splitting, we observe a small increase of the core rotation of stars ascending the red giant branch. Alternatively, an important slow down is observed for red-clump stars compared to the red giant branch. We also show that, at fixed stellar radius, the specific angular momentum increases with increasing stellar mass. Conclusions. Ensemble asteroseismology indicates what has been indirectly suspected for a while: our interpretation of the observed rotational splittings leads to the conclusion that the mean core rotation significantly slows down during the red giant phase. The slow-down occurs in the last stages of the red giant branch. This spinning down explains, for instance, the long rotation periods measured in white dwarfs.

  • Probing the core structure and evolution of red giants using gravity-dominated mixed modes observed with Kepler
    B. Mosser, M. J. Goupil, K. Belkacem, E. Michel, D. Stello, J. P. Marques, Y. Elsworth, C. Barban, P. G. Beck, T. R. Bedding,et al.

    EDP Sciences
    Context. There are now more than 22 months of long-cadence data available for thousands of red giants observed with the Kepler space mission. Consequently, we are able to clearly resolve fine details in their oscillation spectra and see many components of the mixed modes that probe the stellar core. Aims. We report for the first time a parametric fit to the pattern of the � = 1 mixed modes in red giants, which is a powerful tool to identify gravity-dominated mixed modes. With these modes, which share the characteristics of pressure and gravity modes, we are able to probe directly the helium core and the surrounding shell where hydrogen is burning. Methods. We propose two ways for describing the so-called mode bumping that affects the frequencies of the mixed modes. Firstly, a phenomenological approach is used to describe the main features of the mode bumping. Alternatively, a quasi-asymptotic mixed-mode relation provides a powerful link between seismic observations and the stellar interior structure. We used period echelle diagrams to emphasize the detection of the gravity-dominated mixed modes. Results. The asymptotic relation for mixed modes is confirmed. It allows us to measure the gravity-mode period spacings in more than two hundred red giant stars. The identification of the gravity-dominated mixed modes allows us to complete the identification of all major peaks in a red giant oscillation spectrum, with significant consequences for the true identification of � = 3 modes, of � = 2 mixed modes, for the mode widths and amplitudes, and for the � = 1 rotational splittings. Conclusions. The accurate measurement of the gravity-mode period spacing provides an effective probe of the inner, g-mode cavity. The derived value of the coupling coefficient between the cavities is different for red giant branch and clump stars. This provides a probe of the hydrogen-shell burning region that surrounds the helium core. Core contraction as red giants ascend the red giant branch can be explored using the variation of the gravity-mode spacing as a function of the mean large separation.

  • Damping rates of solar-like oscillations across the HR diagram: Theoretical calculations confronted to CoRoT and Kepler observations
    K. Belkacem, M. A. Dupret, F. Baudin, T. Appourchaux, J. P. Marques, and R. Samadi

    EDP Sciences
    The space-borne missions CoRoT and Kepler are providing a rich harvest of high-quality constraints on solar-like pulsators. Among the seismic parameters, mode damping rates remains poorly understood and are thus barely used to infer the physical properties of stars. Nevertheless, thanks to the CoRoT and Kepler spacecrafts it is now possible to measure damping rates for hundreds of main-sequence and thousands of red-giant stars with unprecedented precision. By using a non-adiabatic pulsation code including a time-dependent convection treatment, we compute damping rates for stellar models that are representative of solar-like pulsators from the main-sequence to the red-giant phase. This allows us to reproduce the observations of both CoRoT and Kepler, which validates our modeling of mode damping rates and thus the underlying physical mechanisms included in the modeling. By considering the perturbations of turbulent pressure and entropy (including the perturbation of the dissipation rate of turbulent energy into heat) by the oscillation in our computation, we succeed in reproducing the observed relation between damping rates and effective temperature. Moreover, we discuss the physical reasons for mode damping rates to scale with effective temperature, as observationally exhibited. Finally, this opens the way for the use of mode damping rates to probe turbulent convection in solar-like stars.