@titagartala.ac.in
Assistant Professor, Mechanical Engineering Department
Tripura Institute of Technology, Narsingarh
Heat Transfer and Fluid Flow
Scopus Publications
Scholar Citations
Scholar h-index
Scholar i10-index
Jitender Singh Rawat, Subrata Bhowmik, Rajshekhar Panua, Pravin Ashok Madane, and Manoj Kumar Triveni
Elsevier BV
Sanjeev Kumar, Manoj Kumar Triveni, Jitendra Kumar Katiyar, Tameshwer Nath Tiwari, and Barnik Saha Roy
SAGE Publications
Friction stir welding (FSW) has played a significant role in joining aerospace alloys. During this process, the tool rotational (TRS) speed has been found to significantly affect heat generation compared to other parameters. Therefore, the study has investigated the effect of heat generation on force-torque and mechanical properties at different tool rotational speeds (TRS) in the FSW process through experimentation followed by Artificial Neural Network (ANN) technique. Further, the influence of different TRS ranging between 600 and 1800 rpm with an increment of 400 rpm on considered responses; namely thermal weld cycle, microstructure, and grain distribution in nugget zone (NZ) for 2050-T84 Al-Cu-Li alloy plates, welded using FSW were also investigated. It is observed that the vertically downward force (Z-force), longitudinal force (X-force), and spindle torque (Sp. T) decrease with increasing TRS. It is also observed an increasing (up to 1400 rpm) and then decreasing trend for tensile strength and hardness of welded samples. Moreover, the generation of frictional heat and grain size in NZ is increased with increasing TRS from 600 to 1800 rpm. However, the scanning electron microscope (SEM) micrographs of all-welded samples revealed a ductile mode of tensile fracture. Furthermore, the obtained experimental results were validated using the ANN technique. A quite better agreement has been established among the predicted outcomes from ANN with experimental results.
Manoj Kr. Triveni and Rajsekhar Panua
Springer Science and Business Media LLC
Manoj Kumar Triveni and Rajsekhar Panua
International Information and Engineering Technology Association
Received: 7 January 2018 Accepted: 17 July 2018 A numerical work is conducted for the free convection in a right triangular cavity filled with water-based nanofluids. The bottom wall is in a caterpillar wavy shape which is assumed as a hot wall whereas the rest walls of the enclosure are considered as a cold wall. Governing equations of the problem are discretized through the finite volume method. The present study is undertaken to appraise the effect of the constrained parameters i.e. various types of nanofluids (TiO2, CuO, and Al2O3), volume fractions of thenanoparticles and Rayleigh number (Ra=10-10). The higher augmentation in the rate of heat transfer is observed for the Al2O3-water-based nanofluid for each Rayleigh number.
Manoj Kr. Triveni and Rajsekhar Panua
Springer Science and Business Media LLC
Manoj Kr. Triveni and Rajsekhar Panua
Canadian Science Publishing
The present numerical study is carried out for mixed convection in a nanofluid-filled lid-driven triangular cavity. The base wall of the cavity is in a caterpillar shape, which is assumed as a hot wall while the side and inclined walls are considered as cold walls. The finite volume method along with the SIMPLE algorithm is used to discretize the governing equations. The study is evaluated for constrained parameters, such as volume fraction of the nanoparticles, sliding direction of the side wall, Richardson number, and Grashof number. Fluid flow and heat transfer are presented in terms of streamlines and isotherms and rate of enhancement has been shown by local and average Nusselt number. It is observed from the study that the heat transfer rate is enhanced for each volume fraction of nanoparticles, for both directions of sliding wall, Richardson number, and Grashof number. The obtained numerical results are validated with the predicted results of artificial neural network (ANN). Good agreement is reported between the numerical results and the predicted results.
Matru Nahak, Manoj Triveni, and Rajsekhar Panua
International Information and Engineering Technology Association
Pallabi Gogoi, Manoj Triveni, and Rajsekhar Panua
International Information and Engineering Technology Association
Manoj Triveni and Rajsekhar Panua
International Information and Engineering Technology Association
This computational work is exploited in an isosceles right triangular cavity to delineate the effect of different shapes of base hot wall i.e. smooth, triangular zig-zag (TZ) and caterpillar shape (CS) on natural convection cooling. The side and inclined wall of the enclosure is presumed as cold walls. The two dimensional mass, momentum and energy equations are solved by finite volume method based on SIMPLE algorithm. The results are drawn for different types of hot wall with varying aspect ratio (σ) and Rayleigh number (10-10). From the investigation, it is found that the heat transfer rate is increased for both triangular zig-zag and caterpillar curve shape walls and with the increase of their aspect ratios but the maximum rate of heat transfer is obtained for caterpillar shape.
Manoj Kr. Triveni and Rajsekhar Panua
Elsevier BV
Manoj Kumar Triveni, Dipak Sen, Rajsekhar Panua, , , and
Academic World Research
This work numerically investigates the natural convection in an arch enclosure filled with Al2O3-water based nanofluid. The left side wall of the enclosure is maintained at a higher temperature than that of right side wall while the remaining walls are kept adiabatic. Two-dimensional steady-state governing equations are solved using the finite volume method (FVM). The present work is conducted to state the effects of pertinent parameters such as nanoparticles volume faction ( ) = 0 to 9%, curvature ratio (CR) = 1 to 1.5 and Rayleigh number (Ra) = 104 to 106 on fluid flow and temperature distribution. The numerical results are presented in the form of streamlines, isotherms, local and average Nusselt number. It is observed from the investigation that the variables are exhibiting a significant impact on the heat transfer. The heat transfer rate is enhanced with the increment in the volume fraction of the nanoparticles up to 5% and after that it is decreased gradually. The heat transfer rate is increased with the increase of curvature ratio and it is significantly higher at CR = 1.5. As per the expectation, the heat transfer is increased along with the increment in Rayleigh number. A good agreement is found between the present work and experimental & numerical results from the literature.
Manoj Kumar Triveni, Dipak Sen, Rajsekhar Panua, , , and
Academic World Research
This work numerically investigates the natural convection in an arch enclosure filled with Al2O3-water based nanofluid. The left side wall of the enclosure is maintained at a higher temperature than that of right side wall while the remaining walls are kept adiabatic. Two-dimensional steady-state governing equations are solved using the finite volume method (FVM). The present work is conducted to state the effects of pertinent parameters such as nanoparticles volume faction ( ) = 0 to 9%, curvature ratio (CR) = 1 to 1.5 and Rayleigh number (Ra) = 104 to 106 on fluid flow and temperature distribution. The numerical results are presented in the form of streamlines, isotherms, local and average Nusselt number. It is observed from the investigation that the variables are exhibiting a significant impact on the heat transfer. The heat transfer rate is enhanced with the increment in the volume fraction of the nanoparticles up to 5% and after that it is decreased gradually. The heat transfer rate is increased with the increase of curvature ratio and it is significantly higher at CR = 1.5. As per the expectation, the heat transfer is increased along with the increment in Rayleigh number. A good agreement is found between the present work and experimental & numerical results from the literature.
Manoj Kumar Triveni, Rajsekhar Panua, Dipak Sen, , , and
Academic World Research
The effect of different configurations of partial cold walls on laminar natural convection heat transfer for a right-angle triangular cavity heated from below has been studied numerically. The enclosure is filled with water and heat transfer surfaces such as hot and cold walls are maintained at constant temperature. The side and hypotenuse walls of the enclosure are detached from the middle and have been arranged in four different configurations, namely AB, BC, AD and CD for cooling purpose. The finite volume method is used to solve the dimensionless governing mass, momentum and energy equations. The problem has been solved to explore the effects of the pertinent parameters i.e. different configurations of cold walls and variation of Rayleigh number (10 5 ≤ Ra ≤ 10 7 ). Results are obtained from numerical simulation using commercial software package, FLUENT and presented in the form of streamlines and isotherms. The thermal performance of the enclosure has been expressed by local and average Nusselt numbers. From the analysis, it is observed that the temperature distribution and flow field are significantly affected by these parameters. The high heat transfer rate has been observed for the position AB while low for the position CD. Also, the heat transfer rate enhances as the Rayleigh number (Ra) increases.
Manoj Kr. Triveni, Rajsekhar Panua, and Dipak Sen
Springer Science and Business Media LLC
Manoj Kumar Triveni, Dipak Sen, and RajSekhar Panua
Global Digital Central
A numerical investigation through laminar natural convection has been executed to illuminate the effect of curvature ratio in an arch enclosure filled with water. The left side wall of the cavity is maintained at a higher temperature than that of the right side wall while the other walls are kept insulated. The governing equations such as continuity, momentum and energy equation are solved by finite volume method. The effect of pertinent parameters such as curvature ratio (1≤ CR ≤ 1.5) and Rayleigh number (1×10 4 ≤ Ra ≤ 1×10 6 ) and) on heat transfer are calculated by commercial available computational fluid dynamics software, FLUENT 6.3. The fluid flow and heat transfer are shown for fixed Pandtl number 6.5 by streamlines, isotherms and velocity contour. From the investigation, it has been reported that the varying height of the arch cavity and Rayleigh number playing a significant role in heat transfer rate. The variation in heat transfer is calculated in terms of average Nusselt number.
Manoj K. Triveni, Dipak Sen, and Rajsekhar Panua
Springer Science and Business Media LLC