Maria Grazia Lolli

@idi.it

RESEARCH, TEACHING, or OTHER INTERESTS

Cell Biology, Molecular Biology, Molecular Medicine, Biochemistry, Genetics and Molecular Biology

11

Scopus Publications

Scopus Publications

  • Severely Damaged Freeze-Injured Skeletal Muscle Reveals Functional Impairment, Inadequate Repair, and Opportunity for Human Stem Cell Application
    Daniela Fioretti, Mario Ledda, Sandra Iurescia, Raffaella Carletti, Cira Di Gioia, Maria Grazia Lolli, Rodolfo Marchese, Antonella Lisi, and Monica Rinaldi

    MDPI AG
    Background: The regeneration of severe traumatic muscle injuries is an unsolved medical need that is relevant for civilian and military medicine. In this work, we produced a critically sized nonhealing muscle defect in a mouse model to investigate muscle degeneration/healing phases. Materials and methods: We caused a freeze injury (FI) in the biceps femoris of C57BL/6N mice. From day 1 to day 25 post-injury, we conducted histological/morphometric examinations, an analysis of the expression of genes involved in inflammation/regeneration, and an in vivo functional evaluation. Results: We found that FI activates cytosolic DNA sensing and inflammatory responses. Persistent macrophage infiltration, the prolonged expression of eMHC, the presence of centrally nucleated myofibers, and the presence of PAX7+ satellite cells at late time points and with chronic physical impairment indicated inadequate repair. By looking at stem-cell-based therapeutic protocols of muscle repair, we investigated the crosstalk between M1-biased macrophages and human amniotic mesenchymal stem cells (hAMSCs) in vitro. We demonstrated their reciprocal paracrine effects where hAMSCs induced a shift of M1 macrophages into an anti-inflammatory phenotype, and M1 macrophages promoted an increase in the expression of hAMSC immunomodulatory factors. Conclusions: Our findings support the rationale for the future use of our injury model to exploit the full potential of in vivo hAMSC transplantation following severe traumatic injuries.

  • Silver-coated silicon nanowire platform discriminates genomic DNA from normal and malignant human epithelial cells using label-free Raman spectroscopy
    Valentina Mussi, Mario Ledda, Davide Polese, Luca Maiolo, Debadrita Paria, Ishan Barman, Maria Grazia Lolli, Antonella Lisi, and Annalisa Convertino

    Elsevier BV

  • Biocompatibility assessment of sub-5 nm silica-coated superparamagnetic iron oxide nanoparticles in human stem cells and in mice for potential application in nanomedicine
    Mario Ledda, Daniela Fioretti, Maria Grazia Lolli, Massimiliano Papi, Cira Di Gioia, Raffaella Carletti, Gabriele Ciasca, Sabrina Foglia, Valentina Palmieri, Rodolfo Marchese,et al.

    Royal Society of Chemistry (RSC)
    Ultrafine sub-5 SIO-Fl superparamagnetic nanoparticles evaluated in human stem cells and in mice as a novel promising biomaterial for application in nanomedicine.

  • Combination of cord blood-derived human hepatic progenitors and hepatogenic factors strongly improves recovery after acute liver injury in mice through modulation of the Wnt/β-catenin signaling
    Annalisa Crema, Mario Ledda, Daniela Fioretti, Maria Grazia Lolli, Massimo Sanchez, Elisabetta Carico, Rodolfo Marchese, Monica Rinaldi, and Antonella Lisi

    Hindawi Limited
    Cell therapy represents a promising alternative strategy for end‐stage liver disease, and hepatic progenitors are the best candidates. The possibility to maximize the paracrine effects of transplanted cells represents a great potential benefit for cell therapy success. We studied how cell type and microenvironment modulate the Wnt/β‐catenin signaling in vitro and in vivo. In vitro, the onset of hepatocyte commitment was characterized by the presence of nuclear truncated β‐catenin. In vivo, we analyzed the effect of human hepatic progenitors on damage recovery and functional regeneration in a mouse model of acute liver injury, either in combination or in absence of a selected mix of hepatogenic factors. Animals injected with human hepatic progenitors and hepatogenic factors showed improved engraftment triggering the Wnt/β‐catenin signaling cascade. Human hepatic progenitors expressing the human oval cell marker OV6 displayed a consistent colocalization with β‐catenin and colocalized with Wnt1 main ligand of the canonical pathway. Wnt5a, on the contrary, was expressed in distinct liver cell populations. Epithelial mesenchymal transition‐related markers showed enhanced expression and wider distribution, and the hepato‐mesenchymal population Thy1 + CK19− was also present. Control animals injected with hepatogenic factors alone exhibited higher β‐catenin, decreased Wnt5a levels, and persistent proliferation of the hepato‐mesenchymal population. In conclusion, the combination of human hepatic progenitors with selected hepatogenic factors creates a positive synergy with local microenvironment, ameliorates cell engraftment, stimulates and accelerates regenerative process, and improves the rescue of hepatic function by modulating the Wnt/βcatenin signaling and activating hepato‐mesenchymal population.

  • Array of disordered silicon nanowires coated by a gold film for combined NIR photothermal treatment of cancer cells and Raman monitoring of the process evolution
    Annalisa Convertino, Valentina Mussi, Luca Maiolo, Mario Ledda, Maria Grazia Lolli, Fabio Antonio Bovino, Guglielmo Fortunato, Massimiliano Rocchia, and Antonella Lisi

    IOP Publishing
    Photothermal therapy (PTT) assisted by nanomaterials is a promising minimally invasive technique for cancer treatment. Here, we explore the PTT properties of a silicon- and gold-based nanostructured platform suitable for being directly integrated in fibre laser systems rather than injected into the human body, which occurs for the most commonly unreported PTT nanoagents. In particular, the photothermal properties of an array of disordered silicon nanowires coated by a thin gold film (Au/SiNWs) were tested on a monolayer of human colon adenocarcinoma cells (Caco-2) irradiated with a 785 nm laser. Au/SiNWs allowed an efficient photothermal action and simultaneous monitoring of the process evolution through the Raman signal coming from the irradiated cellular zone. Strong near infra-red (NIR) absorption, overlapping three biological windows, cell-friendly properties and effective fabrication technology make Au/SiNWs suitable both to be integrated in surgical laser tools and as an in vitro platform to develop novel PTT protocols using different cancer types and NIR sources.

  • Non-ionizing radiation for cardiac human amniotic mesenchymal stromal cell commitment: A physical strategy in regenerative medicine
    Mario Ledda, Enrico D’Emilia, Maria Lolli, Rodolfo Marchese, Claudio De Lazzari, and Antonella Lisi

    MDPI AG
    Cell therapy is an innovative strategy for tissue repair, since adult stem cells could have limited regenerative ability as in the case of myocardial damage. This leads to a local contractile dysfunction due to scar formation. For these reasons, refining strategy approaches for “in vitro” stem cell commitment, preparatory to the “in vivo” stem cell differentiation, is imperative. In this work, we isolated and characterized at molecular and cellular level, human Amniotic Mesenchymal Stromal Cells (hAMSCs) and exposed them to a physical Extremely Low Frequency Electromagnetic Field (ELF-EMF) stimulus and to a chemical Nitric Oxide treatment. Physically exposed cells showed a decrease of cell proliferation and no change in metabolic activity, cell vitality and apoptotic rate. An increase in the mRNA expression of cardiac and angiogenic differentiation markers, confirmed at the translational level, was also highlighted in exposed cells. Our data, for the first time, provide evidence that physical ELF-EMF stimulus (7 Hz, 2.5 µT), similarly to the chemical treatment, is able to trigger hAMSC cardiac commitment. More importantly, we also observed that only the physical stimulus is able to induce both types of commitments contemporarily (cardiac and angiogenic), suggesting its potential use to obtain a better regenerative response in cell-therapy protocols.

  • Electromagnetic information transfer through aqueous system
    Alberto Foletti, Mario Ledda, Maria Grazia Lolli, Settimio Grimaldi, and Antonella Lisi

    Informa UK Limited
    ABSTRACT Several beneficial effects of the electromagnetic information transfer through aqueous system (EMITTAS) procedure have previously been reported in vitro. The clinical potential of this procedure has also started to be evaluated. Information flow in biological systems can be investigated through chemical and molecular approaches or by a biophysical approach focused on endogenous electrodynamic activities. Electromagnetic signals are endogenously generated at different levels of the biological organization and, likely, play an active role in synchronizing internal cell function or local/systemic adaptive response. Consequently, each adaptive response can be described by its specific electromagnetic pattern and, therefore, correlates with a unique and specific electromagnetic signature. A biophysical procedure synchronously integrating the EMITTAS procedure has already been applied for the treatment of articular pain, low-back pain, neck pain and mobility, fluctuating asymmetry, early-stage chronic kidney disease, refractory gynecological infections, minor anxiety and depression disorders. This clinical strategy involves a single treatment, since the EMITTAS procedure allows the patient to continue his/her own personal treatment at home by means of self-administration of the recorded aqueous system. A significant and long-lasting improvement has been reported, showing a potential beneficial use of this biophysical procedure in the management of common illnesses in an efficient, effective and personalized way. Data from recent studies suggest that aqueous systems may play a key role in providing the basis for recording, storing, transferring and retrieving clinically effective quanta of biological information. These features likely enable to trigger local and systemic self-regulation and self-regeneration potential of the organism.

  • In vitro biocompatibility study of sub-5 nm silica-coated magnetic iron oxide fluorescent nanoparticles for potential biomedical application
    Sabrina Foglia, Mario Ledda, Daniela Fioretti, Giovanna Iucci, Massimiliano Papi, Giovanni Capellini, Maria Grazia Lolli, Settimio Grimaldi, Monica Rinaldi, and Antonella Lisi

    Springer Science and Business Media LLC
    AbstractMagnetic iron oxide nanoparticles (IONPs), for their intriguing properties, have attracted a great interest as they can be employed in many different biomedical applications. In this multidisciplinary study, we synthetized and characterized ultrafine 3 nm superparamagnetic water-dispersible nanoparticles. By a facile and inexpensive one-pot approach, nanoparticles were coated with a shell of silica and contemporarily functionalized with fluorescein isothiocyanate (FITC) dye. The obtained sub-5 nm silica-coated magnetic iron oxide fluorescent (sub-5 SIO-Fl) nanoparticles were assayed for cellular uptake, biocompatibility and cytotoxicity in a human colon cancer cellular model. By confocal microscopy analysis we demonstrated that nanoparticles as-synthesized are internalized and do not interfere with the CaCo-2 cell cytoskeletal organization nor with their cellular adhesion. We assessed that they do not exhibit cytotoxicity, providing evidence that they do not affect shape, proliferation, cellular viability, cell cycle distribution and progression. We further demonstrated at molecular level that these nanoparticles do not interfere with the expression of key differentiation markers and do not affect pro-inflammatory cytokines response in Caco-2 cells. Overall, these results showed thein vitrobiocompatibility of the sub-5 SIO-Fl nanoparticles promising their safe employ for diagnostic and therapeutic biomedical applications.

  • Altered expression of neuropeptides in FoxG1-null heterozygous mutant mice
    Elisa Frullanti, Sonia Amabile, Maria Grazia Lolli, Anna Bartolini, Gabriella Livide, Elisa Landucci, Francesca Mari, Flora M Vaccarino, Francesca Ariani, Luca Massimino,et al.

    Springer Science and Business Media LLC

  • Placenta Derived Mesenchymal Stem Cells Hosted on RKKP Glass-Ceramic: A Tissue Engineering Strategy for Bone Regenerative Medicine Applications
    Mario Ledda, Marco Fosca, Angela De Bonis, Mariangela Curcio, Roberto Teghil, Maria Grazia Lolli, Adriana De Stefanis, Rodolfo Marchese, Julietta V. Rau, and Antonella Lisi

    Hindawi Limited
    In tissue engineering protocols, the survival of transplanted stem cells is a limiting factor that could be overcome using a cell delivery matrix able to support cell proliferation and differentiation. With this aim, we studied the cell-friendly and biocompatible behavior of RKKP glass-ceramic coated Titanium (Ti) surface seeded with human amniotic mesenchymal stromal cells (hAMSCs) from placenta. The sol-gel synthesis procedure was used to prepare the RKKP glass-ceramic material, which was then deposited onto the Ti surface by Pulsed Laser Deposition method. The cell metabolic activity and proliferation rate, the cytoskeletal actin organization, and the cell cycle phase distribution in hAMSCs seeded on the RKKP coated Ti surface revealed no significant differences when compared to the cells grown on the treated plastic Petri dish. The health of of hAMSCs was also analysed studying the mRNA expressions of MSC key genes and the osteogenic commitment capability using qRT-PCR analysis which resulted in being unchanged in both substrates. In this study, the combination of the hAMSCs’ properties together with the bioactive characteristics of RKKP glass-ceramics was investigated and the results obtained indicate its possible use as a new and interesting cell delivery system for bone tissue engineering and regenerative medicine applications.

  • Interdisciplinary approach to cell-biomaterial interactions: Biocompatibility and cell friendly characteristics of RKKP glass-ceramic coatings on titanium
    Mario Ledda, Angela De Bonis, Francesca Romana Bertani, Ilaria Cacciotti, Roberto Teghil, Maria Grazia Lolli, Antonio Ravaglioli, Antonella Lisi, and Julietta V Rau

    IOP Publishing
    In this work, titanium (Ti) supports have been coated with glass–ceramic films for possible applications as biomedical implant materials in regenerative medicine. For the film preparation, a pulsed laser deposition (PLD) technique has been applied. The RKKP glass–ceramic material, used for coating deposition, was a sol–gel derived target of the following composition: Ca-19.4, P-4.6, Si-17.2, O-43.5, Na-1.7, Mg-1.3, F-7.2, K-0.2, La-0.8, Ta-4.1 (all in wt%). The prepared coatings were compact and uniform, characterised by a nanometric average surface roughness. The biocompatibility and cell-friendly properties of the RKKP glass–ceramic material have been tested. Cell metabolic activity and proliferation of human colon carcinoma CaCo-2 cells seeded on RKKP films showed the same exponential trend found in the control plastic substrates. By the phalloidin fluorescence analysis, no significant modifications in the actin distribution were revealed in cells grown on RKKP films. Moreover, in these cells a high mRNA expression of markers involved in protein synthesis, proliferation and differentiation, such as villin (VIL1), alkaline phosphatase (ALP1), β-actin (β-ACT), Ki67 and RPL34, was recorded. In conclusion, the findings, for the first time, demonstrated that the RKKP glass–ceramic material allows the adhesion, growth and differentiation of the CaCo-2 cell line.