Martina Bartolucci

@gaslini.org

Istituto Giannina Gaslini

48

Scopus Publications

Scopus Publications

  • Proteomic Profiling of Cerebrospinal Fluid and Its Extracellular Vesicles from Extraventricular Drainage in Pediatric Pilocytic Astrocytoma, towards Precision Oncology
    Sonia Spinelli, Xhuliana Kajana, Andrea Garbarino, Martina Bartolucci, Andrea Petretto, Marco Pavanello, Enrico Verrina, Giovanni Candiano, Isabella Panfoli, and Maurizio Bruschi

    MDPI AG
    Pediatric pilocytic astrocytoma (PA) is the most common brain tumor in children. Complete resection provides a favorable prognosis, except for unresectable PA forms. There is an incomplete understanding of the molecular and cellular pathogenesis of PA. Potential biomarkers for PA patients, especially the non-BRAF-mutated ones are needed. Cerebrospinal fluid (CSF) is a valuable source of brain tumor biomarkers. Extracellular vesicles (EVs), circulating in CSF, express valuable disease targets. These can be isolated from CSF from waste extraventricular drainage (EVD). We analyzed the proteome of EVD CSF from PA, congenital hydrocephalus (CH, non-tumor control), or medulloblastoma (MB, unrelated tumoral control) patients. A total of 3072 proteins were identified, 47.1%, 65.6%, and 86.2% of which were expressed in the unprocessed total and in its large-EV (LEV), and small-EV (SEV) fractions. Bioinformatics identified 50 statistically significant proteins in the comparison between PA and HC, and PA and MB patients, in the same fractions. Kinase enrichment analysis predicted five enriched kinases involved in signaling. Among these, only Cyclin-dependent kinase 2 (CDK2) kinase was overexpressed in PA samples. PLS-DA highlighted the inactive carboxypeptidase-like protein X2 (CPXM2) and aquaporin-4 (AQP4) as statistically significant in all the comparisons, with CPXM2 being overexpressed (validated by ELISA and Western blot) and AQP4 downregulated in PA. These proteins were considered the most promising potential biomarkers for discriminating among pilocytic astrocytoma and unrelated tumoral (MB) or non-tumoral conditions in all the fractions examined, and are proposed to be prospectively validated in the plasma for translational medicine applications.

  • Polydopamine nanoparticles as a non-pharmaceutical tool in the treatment of fatty liver disease
    Alessio Carmignani, Matteo Battaglini, Martina Bartolucci, Andrea Petretto, Mirko Prato, and Gianni Ciofani

    Elsevier BV

  • Early IGF-1 receptor inhibition in mice mimics preterm human brain disorders and reveals a therapeutic target
    Alberto Potenzieri, Sara Uccella, Deborah Preiti, Matteo Pisoni, Silvia Rosati, Chiara Lavarello, Martina Bartolucci, Doriana Debellis, Federico Catalano, Andrea Petretto,et al.

    American Association for the Advancement of Science (AAAS)
    Besides recent advances in neonatal care, preterm newborns still develop sex-biased behavioral alterations. Preterms fail to receive placental insulin-like growth factor-1 (IGF-1), a major fetal growth hormone in utero, and low IGF-1 serum levels correlate with preterm poor neurodevelopmental outcomes. Here, we mimicked IGF-1 deficiency of preterm newborns in mice by perinatal administration of an IGF-1 receptor antagonist. This resulted in sex-biased brain microstructural, functional, and behavioral alterations, resembling those of ex-preterm children, which we characterized performing parallel mouse/human behavioral tests. Pharmacological enhancement of GABAergic tonic inhibition by the U.S. Food and Drug Administration–approved drug ganaxolone rescued functional/behavioral alterations in mice. Establishing an unprecedented mouse model of prematurity, our work dissects the mechanisms at the core of abnormal behaviors and identifies a readily translatable therapeutic strategy for preterm brain disorders.

  • Ultrasound-Activated Piezoelectric Nanoparticles Trigger Microglia Activity Against Glioblastoma Cells
    Margherita Montorsi, Carlotta Pucci, Daniele De Pasquale, Attilio Marino, Maria Cristina Ceccarelli, Martina Mazzuferi, Martina Bartolucci, Andrea Petretto, Mirko Prato, Doriana Debellis,et al.

    Wiley
    AbstractGlioblastoma multiforme (GBM) is the most aggressive brain cancer, characterized by a rapid and drug‐resistant progression. GBM “builds” around its primary core a genetically heterogeneous tumor‐microenvironment (TME), recruiting surrounding healthy brain cells by releasing various intercellular signals. Glioma‐associated microglia (GAM) represent the largest population of collaborating cells, which, in the TME, usually exhibit the anti‐inflammatory M2 phenotype, thus promoting an immunosuppressing environment that helps tumor growth. Conversely, “classically activated” M1 microglia could provide proinflammatory and antitumorigenic activity, expected to exert a beneficial effect in defeating glioblastoma. In this work, an immunotherapy approach based on proinflammatory modulation of the GAM phenotype is proposed, through a controlled and localized electrical stimulation. The developed strategy relies on the wireless ultrasonic excitation of polymeric piezoelectric nanoparticles coated with GBM cell membrane extracts, to exploit homotypic targeting in antiglioma applications. Such camouflaged nanotransducers locally generate electrical cues on GAM membranes, activating their M1 phenotype and ultimately triggering a promising anticancer activity. Collected findings open new perspectives in the modulation of immune cell activities through “smart” nanomaterials and, more specifically, provide an innovative auspicious tool in glioma immunotherapy.

  • Microglia Polarization and Antiglioma Effects Fostered by Dual Cell Membrane-Coated Doxorubicin-Loaded Hexagonal Boron Nitride Nanoflakes
    Özlem Şen, Melis Emanet, Martina Mazzuferi, Martina Bartolucci, Federico Catalano, Mirko Prato, Stefania Moscato, Attilio Marino, Daniele De Pasquale, Giammarino Pugliese,et al.

    American Chemical Society (ACS)
    Microglial cells play a critical role in glioblastoma multiforme (GBM) progression, which is considered a highly malignant brain cancer. The activation of microglia can either promote or inhibit GBM growth depending on the stage of the tumor development and on the microenvironment conditions. The current treatments for GBM have limited efficacy; therefore, there is an urgent need to develop novel and efficient strategies for drug delivery and targeting: in this context, a promising strategy consists of using nanoplatforms. This study investigates the microglial response and the therapeutic efficacy of dual-cell membrane-coated and doxorubicin-loaded hexagonal boron nitride nanoflakes tested on human microglia and GBM cells. Obtained results show promising therapeutic effects on glioma cells and an M2 microglia polarization, which refers to a specific phenotype or activation state that is associated with anti-inflammatory and tissue repair functions, highlighted through proteomic analysis.

  • Identification of Central Nervous System Oncologic Disease Biomarkers in EVs from Cerebrospinal Fluid (CSF) of Pediatric Patients: A Pilot Neuro-Proteomic Study
    Xhuliana Kajana, Sonia Spinelli, Andrea Garbarino, Ganna Balagura, Martina Bartolucci, Andrea Petretto, Marco Pavanello, Giovanni Candiano, Isabella Panfoli, and Maurizio Bruschi

    MDPI AG
    Cerebrospinal fluid (CSF) is a biochemical–clinical window into the brain. Unfortunately, its wide dynamic range, low protein concentration, and small sample quantity significantly limit the possibility of using it routinely. Extraventricular drainage (EVD) of CSF allows us to solve quantitative problems and to study the biological role of extracellular vesicles (EVs). In this study, we implemented bioinformatic analysis of our previous data of EVD of CSF and its EVs obtained from congenital hydrocephalus with the aim of identifying a comprehensive list of potential tumor and non-tumor biomarkers of central nervous system diseases. Among all proteins identified, those enriched in EVs are associated with synapses, synaptosomes, and nervous system diseases including gliomas, embryonal tumors, and epilepsy. Among these EV-enriched proteins, given the broad consensus present in the recent scientific literature, we validated syntaxin-binding protein 1 (STXBP1) as a marker of malignancy in EVD of CSF and its EVs from patients with pilocytic astrocytoma and medulloblastoma. Our results show that STXBP1 is negatively enriched in EVs compared to non-tumor diseases and its downregulation correlates with adverse outcomes. Further experiments are needed to validate this and other EV markers in the blood of pediatric patients for translational medicine applications.

  • Proteomics reveals specific biological changes induced by the normothermic machine perfusion of donor kidneys with a significant up-regulation of Latexin
    Gianluigi Zaza, Flavia Neri, Maurizio Bruschi, Simona Granata, Andrea Petretto, Martina Bartolucci, Caterina di Bella, Giovanni Candiano, Giovanni Stallone, Loreto Gesualdo,et al.

    Springer Science and Business Media LLC
    AbstractRenal normothermic machine perfusion (NMP) is an organ preservation method based on the circulation of a warm (35–37 °C) perfusion solution through the renal vasculature to deliver oxygen and nutrients. However, its biological effects on marginal kidneys are unclear. We therefore used mass spectrometry to determine the proteomic profile of kidney tissue and urine from eight organs reconditioned for 120 min using a Kidney Assist device. Biopsies were taken during the pre-implantation histological evaluation (T-1), at the start of back table preparation (T0), and after 60 and 120 min of perfusion (T60, T120). Urine samples were collected at T0 (urine produced in the first 15 min after the beginning of normothermic reperfusion), T30, T60 and T120. Multiple algorithms, support vector machine learning and partial least squares discriminant analysis were used to select the most discriminative proteins during NMP. Statistical analysis revealed the upregulation of 169 proteins and the downregulation of 196 during NMP. Machine learning algorithms identified the top 50 most discriminative proteins, five of which were concomitantly upregulated (LXN, ETFB, NUDT3, CYCS and UQCRC1) and six downregulated (CFHR3, C1S, CFI, KNG1, SERPINC1 and F9) in the kidney and urine after NMP. Latexin (LXN), an endogenous carboxypeptidase inhibitor, resulted the most-upregulated protein at T120, and this result was confirmed by ELISA. In addition, functional analysis revealed that the most strongly upregulated proteins were involved in the oxidative phosphorylation system and ATP synthesis, whereas the downregulated proteins represented the complement system and coagulation cascade. Our proteomic analysis demonstrated that even brief periods of NMP induce remarkable metabolic and biochemical changes in marginal organs, which supports the use of this promising technique in the clinic.

  • Plasma-Derived Exosome Proteins as Novel Diagnostic and Prognostic Biomarkers in Neuroblastoma Patients
    Martina Morini, Federica Raggi, Martina Bartolucci, Andrea Petretto, Martina Ardito, Chiara Rossi, Daniela Segalerba, Alberto Garaventa, Alessandra Eva, Davide Cangelosi,et al.

    MDPI AG
    Neuroblastoma (NB) is the most common extracranial solid tumor during infancy, causing up to 10% of mortality in children; thus, identifying novel early and accurate diagnostic and prognostic biomarkers is mandatory. NB-derived exosomes carry proteins (Exo-prots) reflecting the status of the tumor cell of origin. The purpose of this study was to characterize, for the first time, the Exo-prots specifically expressed in NB patients associated with tumor phenotype and disease stage. We isolated exosomes from plasma specimens of 24 HR-NB patients and 24 low-risk (LR-NB) patients at diagnosis and of 24 age-matched healthy controls (CTRL). Exo-prot expression was measured by liquid chromatography–mass spectrometry. The data are available via ProteomeXchange (PXD042422). The NB patients had a different Exo-prot expression profile compared to the CTRL. The deregulated Exo-prots in the NB specimens acted mainly in the tumor-associated pathways. The HR-NB patients showed a different Exo-prot expression profile compared to the LR-NB patients, with the modulation of proteins involved in cell migration, proliferation and metastasis. NCAM, NCL, LUM and VASP demonstrated a diagnostic value in discriminating the NB patients from the CTRL; meanwhile, MYH9, FN1, CALR, AKAP12 and LTBP1 were able to differentiate between the HR-NB and LR-NB patients with high accuracy. Therefore, Exo-prots contribute to NB tumor development and to the aggressive metastatic NB phenotype.

  • Cell-Membrane-Coated and Cell-Penetrating Peptide-Conjugated Trimagnetic Nanoparticles for Targeted Magnetic Hyperthermia of Prostate Cancer Cells
    Valentin Nica, Attilio Marino, Carlotta Pucci, Özlem Şen, Melis Emanet, Daniele De Pasquale, Alessio Carmignani, Andrea Petretto, Martina Bartolucci, Simone Lauciello,et al.

    American Chemical Society (ACS)
    Prostate malignancy represents the second leading cause of cancer-specific death among the male population worldwide. Herein, enhanced intracellular magnetic fluid hyperthermia is applied in vitro to treat prostate cancer (PCa) cells with minimum invasiveness and toxicity and highly specific targeting. We designed and optimized novel shape-anisotropic magnetic core–shell–shell nanoparticles (i.e., trimagnetic nanoparticles - TMNPs) with significant magnetothermal conversion following an exchange coupling effect to an external alternating magnetic field (AMF). The functional properties of the best candidate in terms of heating efficiency (i.e., Fe3O4@Mn0.5Zn0.5Fe2O4@CoFe2O4) were exploited following surface decoration with PCa cell membranes (CM) and/or LN1 cell-penetrating peptide (CPP). We demonstrated that the combination of biomimetic dual CM-CPP targeting and AMF responsiveness significantly induces caspase 9-mediated apoptosis of PCa cells. Furthermore, a downregulation of the cell cycle progression markers and a decrease of the migration rate in surviving cells were observed in response to the TMNP-assisted magnetic hyperthermia, suggesting a reduction in cancer cell aggressiveness.

  • Proteomic profiling of extracellular vesicles in synovial fluid and plasma from Oligoarticular Juvenile Idiopathic Arthritis patients reveals novel immunopathogenic biomarkers
    Federica Raggi, Martina Bartolucci, Davide Cangelosi, Chiara Rossi, Simone Pelassa, Chiara Trincianti, Andrea Petretto, Giovanni Filocamo, Adele Civino, Alessandra Eva,et al.

    Frontiers Media SA
    IntroductionNew early low-invasive biomarkers are demanded for the management of Oligoarticular Juvenile Idiopathic Arthritis (OJIA), the most common chronic pediatric rheumatic disease in Western countries and a leading cause of disability. A deeper understanding of the molecular basis of OJIA pathophysiology is essential for identifying new biomarkers for earlier disease diagnosis and patient stratification and to guide targeted therapeutic intervention. Proteomic profiling of extracellular vesicles (EVs) released in biological fluids has recently emerged as a minimally invasive approach to elucidate adult arthritis pathogenic mechanisms and identify new biomarkers. However, EV-prot expression and potential as biomarkers in OJIA have not been explored. This study represents the first detailed longitudinal characterization of the EV-proteome in OJIA patients.MethodsFourty-five OJIA patients were recruited at disease onset and followed up for 24 months, and protein expression profiling was carried out by liquid chromatography-tandem mass spectrometry in EVs isolated from plasma (PL) and synovial fluid (SF) samples.ResultsWe first compared the EV-proteome of SF vs paired PL and identified a panel of EV-prots whose expression was significantly deregulated in SF. Interaction network and GO enrichment analyses performed on deregulated EV-prots through STRING database and ShinyGO webserver revealed enrichment in processes related to cartilage/bone metabolism and inflammation, suggesting their role in OJIA pathogenesis and potential value as early molecular indicators of OJIA development. Comparative analysis of the EV-proteome in PL and SF from OJIA patients vs PL from age/gender-matched control children was then carried out. We detected altered expression of a panel of EV-prots able to differentiate new-onset OJIA patients from control children, potentially representing a disease-associated signature measurable at both the systemic and local levels with diagnostic potential. Deregulated EV-prots were significantly associated with biological processes related to innate immunity, antigen processing and presentation, and cytoskeleton organization. Finally, we ran WGCNA on the SF- and PL-derived EV-prot datasets and identified a few EV-prot modules associated with different clinical parameters stratifying OJIA patients in distinct subgroups.DiscussionThese data provide novel mechanistic insights into OJIA pathophysiology and an important contribution in the search of new candidate molecular biomarkers for the disease.

  • Proteomic analysis of urinary extracellular vesicles of kidney transplant recipients with BKV viruria and viremia: A pilot study
    Maurizio Bruschi, Simona Granata, Giovanni Candiano, Andrea Petretto, Martina Bartolucci, Gian Marco Ghiggeri, Giovanni Stallone, and Gianluigi Zaza

    Frontiers Media SA
    IntroductionTo better define the biological machinery associated with BK virus (BKV) infection, in kidney transplantation, we performed a proteomics analysis of urinary extracellular vesicles (EVs).MethodsTwenty-nine adult kidney transplant recipients (KTRs) with normal allograft function affected by BKV infection (15 with only viremia, 14 with viruria and viremia) and 15 controls (CTR, KTRs without BKV infection) were enrolled and randomly divided in a training cohort (12 BKV and 6 CTR) used for the mass spectrometry analysis of the EVs (microvesicles and exosomes) protein content and a testing cohort (17 BKV and 9 CTR) used for the biological validation of the proteomic results by ELISA. Bioinformatics and functional analysis revealed that several biological processes were enriched in BKV (including immunity, complement activation, renal fibrosis) and were able to discriminate BKV vs. CTR. Kinase was the only gene ontology annotation term including proteins less abundant in BKV (with SLK being the most significantly down-regulated protein). Non-linear support vector machine (SVM) learning and partial least squares discriminant analysis (PLS-DA) identified 36 proteins (including DNASE2, F12, AGT, CTSH, C4A, C7, FABP4, and BPNT1) able to discriminate the two study groups. The proteomic profile of KTRs with BKV viruria alone vs. viremia and viruria was quite similar. Enzyme-linked immunosorbent assay (ELISA) for SLK, BPNT1 and DNASE2, performed on testing cohort, validated proteomics results.DiscussionsOur pilot study demonstrated, for the first time, that BKV infection, also in the viruric state, can have a negative impact on the allograft and it suggested that, whether possible, an early preventive therapeutic strategy should be undertaken also in KTRs with viruria only. Our results, then, revealed new mechanistic insights into BKV infection and they selected potential biomarkers that should be tested in future studies with larger patients’ cohorts.

  • Combining confocal microscopy, dSTORM, and mass spectroscopy to unveil the evolution of the protein corona associated with nanostructured lipid carriers during blood-brain barrier crossing
    Matteo Battaglini, Natalia Feiner, Christos Tapeinos, Daniele De Pasquale, Carlotta Pucci, Attilio Marino, Martina Bartolucci, Andrea Petretto, Lorenzo Albertazzi, and Gianni Ciofani

    Royal Society of Chemistry (RSC)
    Lipid magnetic nanovectors in contact with biological fluids are immediately covered by proteins. During the passage across brain endothelial cells, these proteins are partially lost and a new protein corona is developed.

  • Weighted Gene Co-Expression Network Analysis and Support Vector Machine Learning in the Proteomic Profiling of Cerebrospinal Fluid from Extraventricular Drainage in Child Medulloblastoma
    Maurizio Bruschi, Xhuliana Kajana, Andrea Petretto, Martina Bartolucci, Marco Pavanello, Gian Marco Ghiggeri, Isabella Panfoli, and Giovanni Candiano

    MDPI AG
    Medulloblastoma (MB) is the most common pediatric malignant central nervous system tumor. Overall survival in MB depends on treatment tuning. There is aneed for biomarkers of residual disease and recurrence. We analyzed the proteome of waste cerebrospinal fluid (CSF) from extraventricular drainage (EVD) from six children bearing various subtypes of MB and six controls needing EVD insertion for unrelated causes. Samples included total CSF, microvesicles, exosomes, and proteins captured by combinatorial peptide ligand library (CPLL). Liquid chromatography-coupled tandem mass spectrometry proteomics identified 3560 proteins in CSF from control and MB patients, 2412 (67.7%) of which were overlapping, and 346 (9.7%) and 805 (22.6%) were exclusive. Multidimensional scaling analysis discriminated samples. The weighted gene co-expression network analysis (WGCNA) identified those modules functionally associated with the samples. A ranked core of 192 proteins allowed distinguishing between control and MB samples. Machine learning highlighted long-chain fatty acid transport protein 4 (SLC27A4) and laminin B-type (LMNB1) as proteins that maximized the discrimination between control and MB samples. Machine learning WGCNA and support vector machine learning were able to distinguish between MB versus non-tumor/hemorrhagic controls. The two potential protein biomarkers for the discrimination between control and MB may guide therapy and predict recurrences, improving the MB patients’ quality of life.

  • In uveal melanoma Gα-protein GNA11 mutations convey a shorter disease-specific survival and are more strongly associated with loss of BAP1 and chromosomal alterations than Gα-protein GNAQ mutations
    Francesca Piaggio, Michela Croce, Francesco Reggiani, Paola Monti, Cinzia Bernardi, Marianna Ambrosio, Barbara Banelli, Mehmet Dogrusöz, Ralf Jockers, Domenico Bordo,et al.

    Elsevier BV

  • In vitro study of polydopamine nanoparticles as protective antioxidant agents in fibroblasts derived from ARSACS patients
    Matteo Battaglini, Alessio Carmignani, Chiara Martinelli, Jamila Colica, Attilio Marino, Stefano Doccini, Valentina Mollo, Francesca Santoro, Martina Bartolucci, Andrea Petretto,et al.

    Royal Society of Chemistry (RSC)
    PDNPs elicit an antioxidant effect on healthy and ARSACS-derived fibroblasts, thus reducing ROS levels, ROS-induced apoptosis/necrosis, and ROS-induced mitochondrial impairments, and enhancing protein expression.

  • Ultrasound-responsive nutlin-loaded nanoparticles for combined chemotherapy and piezoelectric treatment of glioblastoma cells
    Carlotta Pucci, Attilio Marino, Özlem Şen, Daniele De Pasquale, Martina Bartolucci, Nerea Iturrioz-Rodríguez, Nicoletta di Leo, Giuseppe de Vito, Doriana Debellis, Andrea Petretto,et al.

    Elsevier BV
    Glioblastoma multiforme (GBM), also known as grade IV astrocytoma, represents the most aggressive primary brain tumor. The complex genetic heterogeneity, the acquired drug resistance, and the presence of the blood-brain barrier (BBB) limit the efficacy of the current therapies, with effectiveness demonstrated only in a small subset of patients. To overcome these issues, here we propose an anticancer approach based on ultrasound-responsive drug-loaded organic piezoelectric nanoparticles. This anticancer nanoplatform consists of nutlin-3a-loaded ApoE-functionalized P(VDF-TrFE) nanoparticles, that can be remotely activated with ultrasound-based mechanical stimulations to induce drug release and to locally deliver anticancer electric cues. The combination of chemotherapy treatment with chronic piezoelectric stimulation resulted in activation of cell apoptosis and of anti-proliferation pathways, induction of cell necrosis, inhibition of cancer migration, and reduction of cell invasiveness in drug-resistant GBM cells. Obtained results pave the way for the use of innovative multifunctional nanomaterials in less invasive and more focused anticancer treatments, able to reduce drug resistance in GBM. STATEMENT OF SIGNIFICANCE: : Piezoelectric hybrid lipid-polymeric nanoparticles, efficiently encapsulating a non-genotoxic drug (nutlin-3a) and functionalized with a peptide (ApoE) that enhances their passage through the BBB, are proposed. Upon ultrasound stimulation, nanovectors resulted able to reduce cell migration, actin polymerization, and invasion ability of glioma cells, while fostering apoptotic and necrotic events. This wireless activation of anticancer action paves the way to a less invasive, more focused and efficient therapeutic strategy.

  • Proteomic profiling of human amnion for preterm birth biomarker discovery
    Maurizio Bruschi, Martina Bartolucci, Andrea Petretto, Francesca Buffelli, Xhuliana Kajana, Alessandro Parodi, Riccardo Carbone, Ezio Fulcheri, Luca Antonio Ramenghi, Isabella Panfoli,et al.

    Springer Science and Business Media LLC
    AbstractSpontaneous preterm birth (PTB) complicates about 12% of pregnancies worldwide, remaining the main cause of neonatal morbidity and mortality. Spontaneous preterm birth PTBs is often caused by microbial-induced preterm labor, mediated by an inflammatory process threatening both maternal and newborn health. In search for novel predictive biomarkers of PTB and preterm prelabor rupture of the membranes (pPROM), and to improve understanding of infection related PTB, we performed an untargeted mass spectrometry discovery study on 51 bioptic mid zone amnion samples from premature babies. A total of 6352 proteins were identified. Bioinformatics analyses revealed a ranked core of 159 proteins maximizing the discrimination between the selected clinical stratification groups allowing to distinguish conditions of absent (FIR 0) from maximal Fetal Inflammatory Response (FIR 3) stratified in function of Maternal Inflammatory Response (MIR) grade. Matrix metallopeptidase-9 (MMP-9) was the top differentially expressed protein. Gene Ontology enrichment analysis of the core proteins showed significant changes in the biological pathways associated to inflammation and regulation of immune and infection response. Data suggest that the conditions determining PTB would be a transversal event, secondary to the maternal inflammatory response causing a breakdown in fetal-maternal tolerance, with fetal inflammation being more severe than maternal one. We also highlight matrix metallopeptidase-9 as a potential predictive biomarker of PTB that can be assayed in the maternal serum, for future investigation.

  • Proteomic profile of mesothelial exosomes isolated from peritoneal dialysis effluent of children with focal segmental glomerulosclerosis
    Maurizio Bruschi, Edoardo La Porta, Isabella Panfoli, Giovanni Candiano, Andrea Petretto, Enrico Vidal, Xhuliana Kajana, Martina Bartolucci, Simona Granata, Gian Marco Ghiggeri,et al.

    Springer Science and Business Media LLC
    AbstractPeritoneal dialysis (PD) is the worldwide recognized preferred dialysis treatment for children affected by end-stage kidney disease (ESKD). However, due to the unphysiological composition of PD fluids, the peritoneal membrane (PM) of these patients may undergo structural and functional alterations, which may cause fibrosis. Several factors may accelerate this process and primary kidney disease may have a causative role. In particular, patients affected by steroid resistant primary focal segmental glomerulosclerosis, a rare glomerular disease leading to nephrotic syndrome and ESKD, seem more prone to develop peritoneal fibrosis. The mechanism causing this predisposition is still unrecognized. To better define this condition, we carried out, for the first time, a new comprehensive comparative proteomic mass spectrometry analysis of mesothelial exosomes from peritoneal dialysis effluent (PDE) of 6 pediatric patients with focal segmental glomerular sclerosis (FSGS) versus 6 patients affected by other primary renal diseases (No FSGS). Our omic study demonstrated that, despite the high overlap in the protein milieu between the two study groups, machine learning allowed to identify a core list of 40 proteins, with ANXA13 as most promising potential biomarker, to distinguish, in our patient population, peritoneal dialysis effluent exosomes of FSGS from No FSGS patients (with 100% accuracy). Additionally, the Weight Gene Co-expression Network Analysis algorithm identified 17 proteins, with PTP4A1 as the most statistically significant biomarker associated to PD vintage and decreased PM function. Altogether, our data suggest that mesothelial cells of FSGS patients are more prone to activate a pro-fibrotic machinery. The role of the proposed biomarkers in the PM pathology deserves further investigation. Our results need further investigations in a larger population to corroborate these findings and investigate a possible increased risk of PM loss of function or development of encapsulating peritoneal sclerosis in FSGS patients, thus to eventually carry out changes in PD treatment and management or implement new solutions.

  • Potential biomarkers of childhood brain tumor identified by proteomics of cerebrospinal fluid from extraventricular drainage (EVD)
    Maurizio Bruschi, Andrea Petretto, Armando Cama, Marco Pavanello, Martina Bartolucci, Giovanni Morana, Luca Antonio Ramenghi, Maria Luisa Garré, Gian Marco Ghiggeri, Isabella Panfoli,et al.

    Springer Science and Business Media LLC
    AbstractBrain tumors are the most common solid tumors in childhood. There is the need for biomarkers of residual disease, therapy response and recurrence. Cerebrospinal fluid (CSF) is a source of brain tumor biomarkers. We analyzed the proteome of waste CSF from extraventricular drainage (EVD) from 29 children bearing different brain tumors and 17 controls needing EVD insertion for unrelated causes. 1598 and 1526 proteins were identified by liquid chromatography-coupled tandem mass spectrometry proteomics in CSF control and brain tumor patients, respectively, 263 and 191 proteins being exclusive of either condition. Bioinformatic analysis revealed promising protein biomarkers for the discrimination between control and tumor (TATA-binding protein-associated factor 15 and S100 protein B). Moreover, Thymosin beta-4 (TMSB4X) and CD109, and 14.3.3 and HSP90 alpha could discriminate among other brain tumors and low-grade gliomas plus glyoneuronal tumors/pilocytic astrocytoma, or embryonal tumors/medulloblastoma. Biomarkers were validated by ELISA assay. Our method was able to distinguish among brain tumor vs non-tumor/hemorrhagic conditions (controls) and to differentiate two large classes of brain tumors. Further prospective studies may assess whether the biomarkers proposed by our discovery approach can be identified in other bodily fluids, therefore less invasively, and are useful to guide therapy and predict recurrences.

  • Evaluation of the therapeutic potential of resveratrol-loaded nanostructured lipid carriers on autosomal recessive spastic ataxia of Charlevoix-Saguenay patient-derived fibroblasts
    Özlem Şen, Melis Emanet, Attilio Marino, Melike Belenli Gümüş, Martina Bartolucci, Stefano Doccini, Federico Catalano, Giada Graziana Genchi, Filippo Maria Santorelli, Andrea Petretto,et al.

    Elsevier BV

  • Identification of biochemical and molecular markers of early aging in childhood cancer survivors
    Silvia Ravera, Tiziana Vigliarolo, Silvia Bruno, Fabio Morandi, Danilo Marimpietri, Federica Sabatini, Monica Dagnino, Andrea Petretto, Martina Bartolucci, Monica Muraca,et al.

    MDPI AG
    Survival rates of childhood cancer patients have improved over the past four decades, although cancer treatments increase the risk of developing chronic diseases typical of aging. Thus, we aimed to identify molecular/metabolic cellular alterations responsible for early aging in childhood cancer survivors (CCS). Biochemical, proteomic, and molecular biology analyses were conducted on mononuclear cells (MNCs) isolated from peripheral blood of 196 CCS, the results being compared with those obtained on MNCs of 154 healthy subjects. CCS-MNCs showed inefficient oxidative phosphorylation associated with low energy status, and increased lipid peroxidation and lactate fermentation compared with age-matched normal controls. According to a mathematical model based on biochemical parameters, CCS-MNCs showed significantly higher metabolic ages than their real ages. The dysfunctional metabolism of CCS-MNCs is associated with lower expression levels of genes and proteins involved in mitochondrial biogenesis and metabolism regulation, such as CLUH, PGC1-alpha, and SIRT6 in CCS, not observed in the age-matched healthy or elderly subjects. In conclusion, our study identified some biochemical and molecular alterations possibly contributing to the pathophysiology of aging and metabolic deficiencies in CCS. These results identify new targets for pharmacological interventions to restore mitochondrial function, slowing down the aging-associated pathologies in CCS.

  • Efficient extra-mitochondrial aerobic ATP synthesis in neuronal membrane systems
    Silvia Ravera, Martina Bartolucci, Daniela Calzia, Alessandro M. Morelli, and Isabella Panfoli

    Wiley
    The nervous system displays high energy consumption, apparently not fulfilled by mitochondria, which are underrepresented therein. The oxidative phosphorylation (OxPhos) activity, a mitochondrial process that aerobically provides ATP, has also been reported also in the myelin sheath and the rod outer segment (OS) disks. Thus, commonalities and differences between the extra-mitochondrial and mitochondrial aerobic metabolism were evaluated in bovine isolated myelin (IM), rod OS, and mitochondria-enriched fractions (MIT). The subcellular fraction quality and the absence of contamination fractions have been estimated by western blot analysis. Oxygen consumption and ATP synthesis were stimulated by conventional (pyruvate + malate or succinate) and unconventional (NADH) substrates, observing that oxygen consumption and ATP synthesis by IM and rod OS are more efficient than by MIT, in the presence of both kinds of respiratory substrates. Mitochondria did not utilize NADH as a respiring substrate. When ATP synthesis by either sample was assayed in the presence of 10-100 µM ATP in the assay medium, only in IM and OS it was not inhibited, suggesting that the ATP exportation by the mitochondria is limited by extravesicular ATP concentration. Interestingly, IM and OS but not mitochondria appear able to synthesize ATP at a later time with respect to exposure to respiratory substrates, supporting the hypothesis that the proton gradient produced by the electron transport chain is buffered by membrane phospholipids. The putative transfer mode of the OxPhos molecular machinery from mitochondria to the extra-mitochondrial structures is also discussed, opening new perspectives in the field of neurophysiology.

  • Development of an accurate mass retention time database for untargeted metabolomic analysis and its application to plasma and urine pediatric samples
    Chiara Lavarello, Sebastiano Barco, Martina Bartolucci, Isabella Panfoli, Emanuele Magi, Gino Tripodi, Andrea Petretto, and Giuliana Cangemi

    MDPI AG
    Liquid-chromatography coupled to high resolution mass spectrometry (LC-HRMS) is currently the method of choice for untargeted metabolomic analysis. The availability of established protocols to achieve a high confidence identification of metabolites is crucial. The aim of this work is to describe the workflow that we have applied to build an Accurate Mass Retention Time (AMRT) database using a commercial metabolite library of standards. LC-HRMS analysis was carried out using a Vanquish Horizon UHPLC system coupled to a Q-Exactive Plus Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo Fisher Scientific, Milan, Italy). The fragmentation spectra, obtained with 12 collision energies, were acquired for each metabolite, in both polarities, through flow injection analysis. Several chromatographic conditions were tested to obtain a protocol that yielded stable retention times. The adopted chromatographic protocol included a gradient separation using a reversed phase (Waters Acquity BEH C18) and a HILIC (Waters Acquity BEH Amide) column. An AMRT database of 518 compounds was obtained and tested on real plasma and urine samples analyzed in data-dependent acquisition mode. Our AMRT library allowed a level 1 identification, according to the Metabolomics Standards Initiative, of 132 and 124 metabolites in human pediatric plasma and urine samples, respectively. This library represents a starting point for future metabolomic studies in pediatric settings.

  • The osmr gene is involved in hirschsprung associated enterocolitis susceptibility through an altered downstream signaling
    Tiziana Bachetti, Francesca Rosamilia, Martina Bartolucci, Giuseppe Santamaria, Manuela Mosconi, Serenella Sartori, Maria Rosaria De Filippo, Marco Di Duca, Valentina Obino, Stefano Avanzini,et al.

    MDPI AG
    Hirschsprung (HSCR) Associated Enterocolitis (HAEC) is a common life-threatening complication in HSCR. HAEC is suggested to be due to a loss of gut homeostasis caused by impairment of immune system, barrier defense, and microbiome, likely related to genetic causes. No gene has been claimed to contribute to HAEC occurrence, yet. Genetic investigation of HAEC by Whole-Exome Sequencing (WES) on 24 HSCR patients affected (HAEC) or not affected (HSCR-only) by enterocolitis and replication of results on a larger panel of patients allowed the identification of the HAEC susceptibility variant p.H187Q in the Oncostatin-M receptor (OSMR) gene (14.6% in HAEC and 5.1% in HSCR-only, p = 0.0024). Proteomic analysis on the lymphoblastoid cell lines from one HAEC patient homozygote for this variant and one HAEC patient not carrying the variant revealed two well distinct clusters of proteins significantly up or downregulated upon OSM stimulation. A marked enrichment in immune response pathways (q < 0.0001) was shown in the HAEC H187 cell line, while proteins upregulated in the HAEC Q187 lymphoblasts sustained pathways likely involved in pathogen infection and inflammation. In conclusion, OSMR p.H187Q is an HAEC susceptibility variant and perturbates the downstream signaling cascade necessary for the gut immune response and homeostasis maintenance.

  • Trastuzumab modulates the protein cargo of extracellular vesicles released by erbb2<sup>+</sup> breast cancer cells
    Silvia Marconi, Sara Santamaria, Martina Bartolucci, Sara Stigliani, Cinzia Aiello, Maria Cristina Gagliani, Grazia Bellese, Andrea Petretto, Katia Cortese, and Patrizio Castagnola

    MDPI AG
    Cancers overexpressing the ERBB2 oncogene are aggressive and associated with a poor prognosis. Trastuzumab is an ERBB2 specific recombinant antibody employed for the treatment of these diseases since it blocks ERBB2 signaling causing growth arrest and survival inhibition. While the effects of Trastuzumab on ERBB2 cancer cells are well known, those on the extracellular vesicles (EVs) released from these cells are scarce. This study focused on ERBB2+ breast cancer cells and aimed to establish what type of EVs they release and whether Trastuzumab affects their morphology and molecular composition. To these aims, we performed immunoelectron microscopy, immunoblot, and high-resolution mass spectrometry analyses on EVs purified by differential centrifugation of culture supernatant. Here, we show that EVs released from ERBB2+ breast cancer cells are polymorphic in size and appearance and that ERBB2 is preferentially associated with large (120 nm) EVs. Moreover, we report that Trastuzumab (Tz) induces the expression of a specific glycosylated 50 kDa isoform of the CD63 tetraspanin and modulates the expression of 51 EVs proteins, including TOP1. Because these proteins are functionally associated with organelle organization, cytokinesis, and response to lipids, we suggest that Tz may influence these cellular processes in target cells at distant sites via modified EVs.