@nrc.sci.eg
Botany Department, Agricultural and Biological Research Division
National Research Centre, Giza, EG
Ain Shams University Faculty of Science: Cairo, Ain Shams, EG
1998 to 2010 | PhD (Botany)Education
Zagazig University Faculty of Science: Zagazig, Zagazig, EG
1993-06-12 to 1997-04-14 | M. Sc (Botany )Education
Cairo University Faculty of Science: Cairo, Giza, EG
1986 to 1990-05 | B. Sc. (Botany)Education
Plant physiology, plant Biochemistry
Plant Growth and Yield under stress conditions
Scopus Publications
Scholar Citations
Scholar h-index
Scholar i10-index
Hemmat I. Khattab, Mervat Sh. Sadak, Mona G. Dawood, Fatma M. A. Elkady, and Nesma M. Helal
Springer Science and Business Media LLC
Abstract Background Secondary metabolites of several plants, including esculin and digitoxin, which are cardiac glycosides, were previously employed for their therapeutic effects. The current study aims to investigate the functions of the main Na+ /K+ transport inhibitor digitoxin and the antioxidant esculin for enhancing flax plant growth and production under salinity. Methodology Flax plants were irrigated with distilled water supplemented with 0.0 and 5000 mg/L salt solution starting from 15 DAS from sowing. Then exogenous treatment with digitoxin and esculin with 50 mg L− 1 and 100 mg L− 1 were used for this work. Results According to the results of this work, foliar spraying of esculin or digitoxin increased the salinity tolerance of flax plants.The foliar application of either esculin or digitoxin induced an elevation in the contents of photosynthetic pigments, osmolytes including soluble sugar and proline as well as the total phenols in salt-stressed flax plants. Moreover, esculin and digitoxin in particular counteract oxidative stress by increasing the activity of antioxidant enzymes including superoxide dismutase, catalase, peroxidase, phenylalanine ammonia-lyase, and tyrosine ammonia lyase, leading to a decrease in reactive oxygen species and lipid peroxidation levels and electrolyte leakage. The efficiency of esculin and digitoxin to sustain ion homeostasis by inhibiting Na+ absorption and increasing potassium, calcium, and phosphorus in flax plants may be the reason for their protective actions towards salinity.As a consequence, esculin and digitoxin increased yield quantity and quality as shown by increases in all investigated yield criteriaas shoot height, root length, their fresh and dry weights as well asseed yield/plant (g), and 1000 seeds weight, especially those that improved the desired oil properties. Conclusion In conclusion, this study concluded that digitoxin was more effective in inhibiting Na+ build-up and increasing flax salinity tolerance, particularly at the high investigated dose as compared to esculin. In this study, we reported the recent findings of exogenousapplication of either digitoxin or esculin glycosides which are new investigated salt alleviators never used before for improving the salt tolerance in flax plants.
Tamer M. Abdel-Razik, Bakry A. Bakry, and Mervat Sh. Sadak
Medknow
Background Mint plants (Mentha spp.) are a member of the Lamiaceae family and it has long been used in medicine. Its applications include carminative, anti-inflammatory, antispasmodic, antiemetic, diaphoretic, analgesic, stimulant, emmenagogue, and anticatarrhal. Adding chitosan to medicinal plants has a major role in the process of secondary metabolism, as its addition stimulates the production of chemical compounds or essential oils in the plant. Amino acids are one of the possible strategies for increasing agricultural productivity. They are organic nitrogen polymers that are used as the building blocks of proteins and enzymes. Objective This study aimed to determine how chitosan, in combination with or without the foliar application of amino acids, affected the growth and physiological traits of two cultivars of mint. Materials and methods Two pot trail investigation studies were carried out during the two consecutive seasons 2021 and 2022 under the natural conditions of the greenhouse of the National Research Center (NRC), Dokki, Giza, Egypt. To study the effect of two levels of chitosan (1.5 and 3.0 g/l with amino acid at rates of 50 and 100 mg/l) as foliar application on growth, essential oil, and some physiochemical characteristics of two Mentha (Mentha viridis and Mentha longifolia L.) cultivars. Results and conclusion The results show significant differences between two mint cultivars in the growth parameters of mint plants. Plants of M. viridis variety were characterized by the highest significant values of herb fresh weight, number of branches/plants, essential oil (%), flavonoid content, and protein %, while the M. longifolia variety was superior in plant height, herb dry weight, chlorophyll a, chlorophyll b, carotenoids, total pigments, indole acetic acid, phenol, carbohydrates %, free amino acids, flavonoid, and proline contents. Using chitosan as foliar treatments at different concentrations with or without amino acid significantly increased all studied traits. The interaction between two cultivars and foliar treatments of high rates of chitosan and amino acid gave the maximum significant increase of plant height, photosynthetic pigments and indole acetic acid, phenol, protein, free amino acid, and proline contents as well as antioxidant activities (DPPH%).
Mervat Shamoon Sadak, Mona Gergis Dawood, and Mohamed El-Sayed El-Awadi
Springer Science and Business Media LLC
Mervat Sadak, Safaa El-lethy, and Rania Samy Hanafy Amin
Egyptian Knowledge Bank
Mona Gergis Dawood, Mohamed El-sayed El-Awadi, and Mervat Shamoon Sadak
Springer Science and Business Media LLC
AbstractPurpose: Drought stress is an important challenge to global food security and agricultural output. Dramatic and quick climate change has made the problem worse. It caused unexpected impacts on the growth, development, and yield of different plants. Hence, the ultimate yield does not fulfill the required demand. Understanding the biochemical, ecological, and physiological reactions to these pressures is essential for improved management. Chitosan applications have a wide prospect of addressing abiotic issues. Moreover, chitosan and chitosan nanoparticles have a positive impact on increasing plant tolerance to abiotic stress, like drought stress. The current research investigated the consequences of drought stress on the morpho-physiological and biochemical parameters of Vicia faba plants, a comparison of chitosan and chitosan nanoparticles, and their ameliorating capacity towards drought stress. Methods: A pot experiment was conducted to evaluate the beneficial role of either chitosan (0.5, 1.0, and 2.0 gL− 1) or chitosan NPs (10, 20, and 30 mgL− 1) in inducing the Vicia faba tolerance to drought stress (60% water field capacity). Results: Drought stress significantly affected vegetative growth parameters of the shoot system, photosynthetic pigments, and indole acetic acid, accompanied by significant increases in vegetative growth parameters of the root system, some chemical composition of dry leaf tissues (total soluble sugar, soluble protein, proline, phenolic compound, glutathione, α tocopherol), hydrogen peroxide, malonialdehyde, lipoxygenase, and antioxidant enzyme activities (catalase, peroxidase, superoxide dismutase, ascorbate peroxidase, glutathione reductase). All applied treatments. chitosan and chitosan nanoparticles, at all concentrations, improved plant tolerance to drought stress via increasing vegetative growth parameters, photosynthetic pigments, indole acetic acid, total soluble sugar, soluble protein, proline, phenolic compound, glutathione, α tocopherol, and antioxidant enzyme activities, accompanied by decreases in hydrogen peroxide, malondialdehyde, and lipoxygenase enzyme. It is worthy to mention that 20 mgL− 1 chitosan nanoparticles was the most optimal treatment either under well water conditions (90% water field capacity) or drought stress conditions (60% water field capacity). Moreover, it is obvious from these results that the response of bean plants grown under well watered conditions was more pronounced than that of those plants grown under drought stress conditions to 20 mgL− 1 chitosan nanoparticles. Conclusions: Hence, it can be concluded that chitosan and chitosan nanoparticles can mitigate the negative impacts of drought stress by improving the photosybthetic pigments, endogenous indole acetic acid, and osmolyte contents, as well as the non-enzymatic and enzymatic antioxidant compounds of the Vicia faba plant.
Elham A. Badr, Gehan Sh. Bakhoum, Mervat Sh. Sadak, Ibrahim Al-Ashkar, Mohammad Sohidul Islam, Ayman El Sabagh, and Magdi T. Abdelhamid
Tech Science Press
N.M. Al-Ashkar, B.A. Bakry, H.M.S. El-Bassiouny, M.M.S. Abdallah, and M.S. Sadak
Elsevier BV
Bakry A. Bakry, Mervat Sh. Sadak, Nagla M. Al Ashkar, Omar M. Ibrahim, Mohammad K. Okla, and Amira M. El-Tahan
MDPI AG
Drought stress is an important challenge to global food security and agricultural output, and dramatic and rapid climate change has made the problem worse, causing unexpected impacts on the growth, development, and yield of different plants. Understanding the biochemical, ecological, and physiological reactions to these pressures is essential for improved management. Carbon materials’ impacts on plants subjected to different stresses are still poorly studied. Thus, this study was carried out investigate the feasibility of applying carbon nanotubes (CNTs) (0, 20, and 40 mg/L) as a foliar treatment for mitigating the effect of water stress (100%, 75%, and 50% irrigation water, IW) on peanut plants growing in sandy soil through assessments of growth and productivity and some physiological and biochemical measurements. Exposure of peanuts to decreased irrigation water led to significant decreases in growth, yield, photosynthetic pigments, indole acetic acid (IAA), and some nutritional components in peanut seeds, but increased levels of osmolytes such as total soluble carbohydrates (TSS) and proline, in addition to free amino acids and phenolics. However, foliar spraying with CNTs could ameliorate the impacts of decreased irrigation water on growth and production via enhancing the studied physiological parameters, such as photosynthetic pigments, IAA, osmolytes, and phenolics. Furthermore, the application of carbon nanotubes improved the nutrient contents, as expressed by the oil yield, protein yield, total carbohydrates, antioxidant activities (DPPH), B-carotene, lycopene, and flavonoids in peanut seeds, either under normal or water stress conditions. The higher level of CNTs (40 mg/L) was more effective than the lower one (20 mg/L) at increasing the above-mentioned parameters. In conclusion, foliar treatment with carbon nanotubes has the ability to enhance peanut drought tolerance and increase its growth and productivity under sandy soil conditions.
Bakry Bakry, Deyaa Eldin Sabra, AbdelSamad Younis, and Mervat Sadak
Egyptian Knowledge Bank
Gehan Sh. Bakhoum, Mervat Sh. Sadak, and Marian S. Thabet
Springer Science and Business Media LLC
AbstractNaturally, under field conditions, plants are regularly experienced by a mixture of two or more stress factors. Drought is a major abiotic stress, and fungal pathogens characterize a main biotic stress challenge faced by plants and impact negatively on plant development and productivity. We propose that foliar application of nitric oxide (NO) donors can have positive effects on the induction of tolerance to biotic and abiotic stress on groundnut plants. This investigation was carried out to study the changes in growth, some biochemical aspects, and yield and quality of groundnut plants as well as induction of resistance to Cercospora leaf spot disease in response to nitric oxide (NO) donors, sodium nitroprusside (SNP), and arginine (Arg) (2.5, 5.0, and 7.5 mM) under two water irrigation levels 100% and 75% of water irrigation requirements (WIR), in two field experiments through two successive growing seasons of 2021 and 2022. Decreasing irrigation water significantly reduced shoot length, branches numberplant-1, shoot fresh and dry weight, photosynthetic pigments components, endogenous indole acetic acid (IAA) contents, and yield components. Furthermore, root fresh and dry weight, phenols, total soluble sugars (TSS), proline contents, and the accumulation of hydrogen peroxide (H2O2) and lipid peroxidation of groundnut leaves increased significantly. Contrarily, foliar application with Arg and SNP alleviated the negative influences of drought on growth and productivity of groundnut plants via enhancing photosynthetic pigments, IAA, phenolic compounds, TSS, and proline contents. Additionally, SNP and Arg significantly decreased oxidative damage through decreasing H2O2 and lipid peroxidation by the induction of antioxidant enzymes. Remarkably, the increase of drought level led to a reduction in Cercospora leaf spot (CLS) disease with the use of high concentrations of both Arg and SNP. Interestingly, in both stressed and unstressed plants, SNP treatment at 7.5 mM was the most effective in reducing the incidence and severity of disease, while Arg at 2.5 mM recorded the lowest reduction compared to other treatments. In conclusion, foliar treatment of either SNP or Arg is a profound effect on modulating the drought stress and induction of resistance to Cercospora leaf spot disease of groundnut plants throughout regulating physiological and biochemical processes associated with photosynthesis and oxidative responses.
Mervat Shamoon Sadak
Springer Science and Business Media LLC
AbstractArbuscular mycorrhizal fungi (AMF) have a key role in natural and agricultural ecosystems affecting plant nutrition, soil biological activity and modifying the availability of nutrients. Thiamine (Vitamin B1) is an essential coenzyme which incorporated in a wide range of plant metabolic processes. Thus, this research aimed to study the possibility of mitigating the negative effect of salinity stress on white lupine plant via using AMF and Vit B1 through assessment growth, various physiological traits and yield components of the white lupine plant. AMF was added to the soil (0.0 and 7 g pot−1) and Vit B1was foliar applied to white lupine seedlings (0.0, 100 and 200 mgL−1) and watered by two levels of salinity (0.0 or 5000 mgL−1). Salinity stress (5000 mgL−1) resulted in significant reductions in growth photosynthetic pigments constituents, endogenous indole acetic acid (IAA), some elements & productivity of white lupine in comparison to control plants. While, increasing phenols, some osmolytes and sodium compared to control (plants irrigated by tap water). Adding AMF to soil with the recommended dose boosted white lupine growth, certain physiological aspects and productivity in white lupine plants under irrigation with saltwater (5000 mgL−1). Furthermore, exogenous Vit B1 treatment with 100 & 200 mgL−1 not only enhanced growth and seeds productivity of white lupine plants under normal irrigation but also, improved salinity tolerance by increasing white lupine growth and productivity via inmproving photosynthetic pigments, osmolytes levels and element contents compared to their corresponding controls. Finally it could be concluded that, 200 mgL−1Vit B1 wit AMF treatment shows superiority in inducing maximum improving white lupine plant salinity tolerance.
Nada A. El-Taweel, Mervat Sh. Sadek, and Noha S. Khalifa
Egypts Presidential Specialized Council for Education and Scientific Research
Wael M. Semida, Taia A. Abd El-Mageed, Mohammed A. H. Gyushi, Shimaa A. Abd El-Mageed, Mostafa M. Rady, Abdelsattar Abdelkhalik, Othmane Merah, Ayman El Sabagh, Ibrahim M. El-Metwally, Mervat Sh. Sadak,et al.
MDPI AG
Water and salt stresses are among the most important global problems that limit the growth and production of several crops. The current study aims at the possibility of mitigating the effect of deficit irrigation of common bean plants growing in saline lands by foliar spraying with selenium via the assessment of growth, productivity, physiological, and biochemical measurements. In our study, two field-based trials were conducted in 2017 and 2018 to examine the influence of three selenium (Se) concentrations (0 (Se0), 25 (Se25), and 50 mg L−1 (Se50)) on common bean plants grown under full irrigation (I100 = 100% of the crop evapotranspiration; ETc) and deficit irrigation (I80 = 80% of ETc, and I60 = 60% of ETc). Bean plants exposed to water stress led to a notable reduction in growth, yield, water productivity (WP), water status, SPAD value, and chlorophyll a fluorescence features (Fv/Fm and PI). However, foliar spraying of selenium at 25 or 50 mg L−1 on stressed bean plants attenuated the harmful effects of water stress. The findings suggest that foliage application of 25 or 50 mg L−1 selenium to common bean plants grown under I80 resulted in a higher membrane stability index, relative water content, SPAD chlorophyll index, and better efficiency of photosystem II (Fv/Fm, and PI). Water deficit at 20% increased the WP by 17%; however, supplementation of 25 or 50 mg L−1 selenium mediated further increases in WP up to 26%. Exogenous application of selenium (25 mg L−1 or 50 mg L−1) to water-stressed bean plants elevated the plant defense system component, given that it increased the free proline, ascorbic acid, and glutathione levels, as well as antioxidant enzymes (SOD, APX, GPX, and CAT). It was concluded that the application of higher levels (25 or/and 50 mg L−1) of Se improves plant water status as well as the growth and yield of common beans cultivated in saline soil.
Gehan Sh Bakhoum, M.M. Tawfik, M.O. Kabesh, and Mervat Sh Sadak
Elsevier BV
Mervat Shamoon Sadak and Mona Gergis Dawood
Springer Science and Business Media LLC
Rania Samy Hanafy and Mervat Shamoon Sadak
Springer Science and Business Media LLC
AbstractDrought stress is an unavoidable challenge limiting plant production and quality. Stigmasterol is a potential compound for plant protection and improvement productivity under drought. Thus, the effects of using stigmasterol as exogenous treatment on improving growth and productivity of sunflower grown under drought were studied. A pot experiment was carried out at two summer seasons, using foliar treatment of stigmasterol 0, 100, 200, and 300 mg L−1 on sunflower plants under different irrigation levels 80% and 50% water irrigation requirement (WIR). Drought stress (50% WIR) provoked significant reductions in growth and yield components; the percentages of decrease in head diameter reached 26.55%, head circumference 26.05%, seed weight per plant 36.26%, and 100 seed weight 29.61%, via decreasing photosynthetic pigments and indole acetic acid while elevating hydrogen peroxide (H2O2), lipid peroxidation (MDA), membrane leakage, lipoxygenase activity, some antioxidant compounds, enzymes, and osmolytes. Stigmasterol has a promotive effect on growth and productivity of sunflower through improving photosynthetic pigments, indole acetic acid, non-enzymatic, enzymatic antioxidant, and osmolytes, while it decreased membrane leakage, H2O2, and MDA, thus, improving yield quality. Moreover, stigmasterol improves the economic importance of sunflower seed oil. About 200 mg L−1 of stigmasterol was the most effective concentration in improving yield parameters, as it causes 19.84% and 25.29% in seed weight per plant and 26.72% and 33.95% of 100 seed weight under 80% and 50% WIR, respectively. Stigmasterol improved growth and productivity of sunflower under normal water conditions and could overcome the reduced impact of drought by improving growth and development and different physiological attributes.
Mervat Sh Sadak, Rania S. Hanafy, Fatma M. A. M. Elkady, Asmaa M. Mogazy, and Magdi T. Abdelhamid
MDPI AG
One of the main environmental stresses that hinder crop development as well as yield is salt stress, while the use of signal molecules such as calcium (Ca) has a substantial impact on reducing the detrimental effects of salt on different crop types. Therefore, a factorial pot experiment in a completely randomized design was conducted to examine the beneficial role of Ca (0, 2.5, and 5 mM) in promoting the physiological, biochemical, and growth traits of the wheat plant under three salt conditions viz. 0, 30, and 60 mM NaCl. Foliar application of Ca increased the growth of salt-stressed wheat plants through increasing photosynthetic pigments, IAA, proline, and total soluble sugars contents and improving antioxidant enzymes in addition to non-enzymatic antioxidants glutathione, phenol and flavonoids, β-carotene, and lycopene contents, thus causing decreases in the over-accumulation of free radicals (ROS). The application of Ca increased the activity of antioxidant enzymes in wheat plants such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), which scavenge reactive oxygen species (ROS) and relieved salt stress. An additional salt tolerance mechanism by Ca increases the non-antioxidant activity of plants by accumulating osmolytes such as free amino acids, proline, and total soluble sugar, which maintain the osmotic adjustment of plants under salinity stress. Exogenous Ca application is a successful method for increasing wheat plants’ ability to withstand salt stress, and it has a considerable impact on the growth of wheat under salt stress.
Mervat Sadak, Hala El-Bassiouny, Sherin Mahfouz, Magda El-Enany, and Tarek Elewa
Egypts Presidential Specialized Council for Education and Scientific Research
M. S. Sadak, B. A. Bakry, T. M. Abdel-Razik, and R. S. Hanafy
FapUNIFESP (SciELO)
Abstract Two field experiments were conducted during 2019 and 2020 summer seasons at the experimental station of national research center, Al-Nubaryia district, El-Behaira Governorate, Egypt, to study the effect of Phenyl alanine and Aspartic acid foliar fertilizers at rates of (0.0, 50, 75 and 100 ppm) on morphological characters, photosynthetic pigments, seed yield and its components as well as seed quality of groundnut grown under sandy soil. Results indicated superiority of aspartic acid over phenyl alanine on increasing different growth parameters, chlorophyll b, biological and seed yields/plant, biological, seed and oil yields (kg/fed.), % of carbohydrate in peanut seeds. Meanwhile, phenyl alanine was superior on increasing carotenoids, indole acetic acid, phenolics, free amino acids, flavonoids, Lycopene, β-Carotene contents, antioxidant activity expressed as (1,1-diphenyl-2-picrylhydrazyl DPPH %) and shilling percentage. In addition, aspartic acid and phenyl alanine with various levels caused significant increases in growth and seed yield quantity and quality of peanut plants through increases in photosynthetic pigments, indole acetic acid, phenolics and free amino acids contents. Aspartic acid was more effective than phenyl alanine, Foliar treatment with 100 mg/L aspartic acid increased oil yield (700.36 over 568.05 ton/fed.) and seed yield (1531.98 over 1253.49 kg/fed.). Finally, it can conclude that using aspartic acid and phenyl alanine as foliar treatment improved growth and yield of ground nut plants under sandy soil.
Mervat Sadak, Elham A. Badr, Gehan, and A. Amin
Egypts Presidential Specialized Council for Education and Scientific Research
Faten S. A. Zaki, Mahmoud A. Khater, Mohamed E. El-Awadi, Mona G. Dawood, Mervat Sh. Shamoon, Magda A.F. Shalaby, and Karima Gamal M. El-Din
Egypts Presidential Specialized Council for Education and Scientific Research
Gehan Bakhoum, Mervat Sadak, and elham Badr ELSayed
Egypts Presidential Specialized Council for Education and Scientific Research
Gehan Bakhoum, Gehan, A. Amin, and Mervat Sadak
Egypts Presidential Specialized Council for Education and Scientific Research
Ibrahim Mohamed El-Metwally, Mervat Shamoon Sadak, and Hani Saber Saudy
Springer Science and Business Media LLC
AbstractSoil not only represents the main supporter for root growth, but also is the supplier of water and nutrients. However, several soils, i.e. sandy soils, do not adequately fulfill the plant growth requirements of the environmental resources. Therefore, it is necessary to compensate, even partially, the lack of these required resources for better plant growth and development. Amino acids could introduce a substantial solution in this respect. Therefore, two field experiments under field conditions were carried out to investigate the effect of glutamic (GLA) and 5‑aminolevulinic (ALA) acids on photosynthesis pigments, oxidative defense indicators as well as yield and seed quality of peanut. Three concentrations of glutamic acid (10, 20 and 40 mg L−1, denoted GLA10, GLA20, and GLA40, respectively) and three concentrations of 5‑aminolevulinic acid, (10, 20 and 40 mg L−1, abbreviated to ALA10, ALA20, and ALA40, respectively), in addition to a check treatment (tap water) were applied. Treatments were arranged in a randomized complete block design with three replicates. Findings exhibited potentiality of GLA20 treatment for recording the highest values of chlorophyll a, chlorophyll b, chlorophyll a/b, carotenoids and total pigments compared to the other treatments. The increases in indole acetic acid, phenolics and free amino acids were 68.1, 58.9 and 19.6% as well as 64.6, 51.2 and 17.7%, due to application of GLA20 and ALA20, respectively. Substantial improvements in pod yield ha−1, oil %, flavonoids and antioxidant activity were obtained with GLA20 or ALA20. In conclusion, since glutamic or 5‑aminolevulinic acids at concentration of 20 mg L−1 showed promotive effect on physiological and biochemical status of peanut, such amino acids should be adopted as a promising practice in peanut cultivations.
Mervat Sadak
Egypts Presidential Specialized Council for Education and Scientific Research