Alex V.Sagalovich

@nanotechnology.org.ua

Special technologies
STC Nanotechnology



                                         

https://researchid.co/nano6838

EDUCATION

Kharkiv state University

RESEARCH INTERESTS

CVD, PVD, vacuum coatings, tribology, thin film, nitriding, diffusion welding, heat treatment, sofc. Fuel cells

8

Scopus Publications

272

Scholar Citations

8

Scholar h-index

4

Scholar i10-index

Scopus Publications

  • Vacuum-plasma multilayer protective coatings for turbine blades
    Alex Sagalovych, Vlad Sagalovych, Victor Popov, and Stas Dudnik

    «Scientific Route» OÜ
    Abstract The methods of creating the advanced nanomaterials and nanotechnologies of functional multicomponent coatings Avinit (mono- and multilayer, nanostructured, gradient) to improve the performance of materials, components and parts are considered. The vacuum-plasma nanotechnologies Avinit were developed based on the use of gas-phase and plasma-chemical processes of atomic-ionic surface modification and the formation of nanolayer coatings in the environment of non-steady low-temperature plasma. Considerable attention is paid to the equipment for application of functional multilayer composite coatings: an experimental-technological vacuum-plasma automated cluster Avinit, which allows to implement complex methods of coating, combined in one technological cycle. The information about the structure and service characteristics of Avinit coatings has a large place. The results of metallographic, metallophysical, tribological investigations of properties of the created coatings and linking of their characteristics with parameters of sedimentation process are described. The possibilities of parameters processes regulation for the purpose of reception of functional materials with the set physicochemical, mechanical complex and other properties are considered. The investigation of creating of multilayer protective surface coatings Аvinit based on Ti-TiN for turbine blades by vacuum-arc method was carried out. The influence of different methods and modes of vacuum-plasma treatment of coated surface of substrates to the adhesion value of nanolayer protective TiTiN coatings is studied. On the basis of carried out investigations the technology of coating the steam turbines blades for protection against flow-accelerated corrosions is developed. The issues of development and industrial implementation of the latest technologies for applying wear-resistant antifriction coatings Avinit with the use of nanotechnology to increase the life of various critical elements of steam and nuclear turbines are covered in detail. The book is aimed at specialists working in the field of ion-plasma surface modification of materials and functional coatings application. Keywords Vacuum plasma multilayer protective coatings Avinit, titanium, titanium nitride, turbine blades, development of nanotechnologies Avinit.

  • Avinit vacuum-plasma technologies in transport machine building
    Alex Sagalovych, Vlad Sagalovych, Victor Popov, Stas Dudnik, and Oleksander Olijnyk

    Scientific Route OÜ
    Transport engineering is one of the areas in which coatings for various functional purposes are widely used. Among the many methods used for coating, the group of vacuum-plasma methods occupies one of the leading directions in the field of obtaining coatings with unique characteristics that make it possible to significantly increase the operational characteristics of machines and mechanisms lay down new design solutions for their improvement. The monograph presents the results of the development and practical implementation of new nanomaterials and nanotechnologies for the deposition of Avinit coatings for various functional purposes. A distinctive feature of the presented developments is the integrated use of various vacuum-plasma and plasma-chemical coating methods (vacuum-arc, magnetron), vacuum-plasma processing and diffuse surface saturation. The experimental and technological equipment created for this – the Avinit vacuum-plasma automated cluster – makes it possible to implement various methods of coating deposition, combined into one technological cycle. In the monograph, much attention is paid to the results of experimental studies of obtaining coatings of various compositions and the study of their tribological characteristics in friction pairs with such coatings, as well as other properties. The issues of stability of characteristics of coatings in time are considered, as well as the criteria for such stability. Based on the research carried out, a number of experimental industrial technologies for applying coatings for various functional purposes (reinforcing anti-seize, protective) on parts of transport engineering (pistons and rings of internal combustion engines, fuel equipment, etc.) have been developed, examples of the successful application of the developed technologies in mass production are given. aeronautical and other purposes The monograph also discusses the issues of creating highly efficient tools for processing machine parts and mechanisms, including with precision accuracy, and presents the results of developments in this area. The book is intended for specialists working in the field of ion-plasma modification of the surface of materials and the application of functional coatings on parts of transport engineering and other industries.


  • Improving the performance, reliability and service life of aviation technology products based on the innovative vacuum-plasma nanotechnologies for application of avinit functional coatings and surfaces modification
    Viktor Popov, Alex Sagalovych, and Vlad Sagalovych

    «Scientific Route» OÜ
    The methods of creating the advanced nanomaterials and nanotechnolo-gies of functional multicomponent coatings Avinit (mono- and multilayer, nano-structured, gradient) to improve the performance of materials, components and parts of aerotechnical purposes are considered. The vacuum-plasma nanotechnologies Avinit were developed based on the use of gas-phase and plasma-chemical processes of atomic-ionic surface modifi-cation and the formation of nanolayer coatings in the environment of nonsteady low-temperature plasma. Considerable attention is paid to the equipment for application of functio-nal multilayer composite coatings: an experimental-technological vacuum-plas-ma automated cluster Avinit, which allows to implement complex methods of coating (plasma-chemical CVD, vacuum-plasma PVD (vacuum-arched, magne-tron), processes of ionic saturation and ionic surface treatment, combined in one technological cycle. The information about the structure and service characteristics of Avinit coatings has a large place. The results of metallographic, metallophysical, tribological investigations of properties of the created coatings and linking of their characteristics with pa-rameters of sedimentation process are described. The possibilities of parameters processes regulation for the purpose of reception of functional materials with the set of physicochemical, mechanical complex and other properties are considered. The issues of development of experimental-industrial technologies Avinit and industrial implementation of the developed technological processes to increase of operational characteristics of aerotechnical products are addressed in detail. Attention is paid to the development prospects of vacuum-plasma nano-technologies Avinit and expansion of these methods applications in mechanical engineering, aviation, power-plant industry, space industry and other fields of science and technology. The book is aimed at specialists working in the field of ion-plasma surface modification of materials and functional coatings application.

  • COMPARATIVE ANALYSIS OF THE FATIGUE CONTACT STRENGTH OF SURFACES HARDENED BY CEMENTATION AND THE ION-PLASMA NITRIDING АVINIT N
    Alex Sagalovych, Viktor Popov, Vladislav Sagalovуch, Stanislav Dudnik, Vladimir Bogoslavzev, Nik Stadnichenko, and Andrey Edinovych

    Private Company Technology Center

  • DEVELOPMENT OF THE CHEMICAL VAPOR DEPOSITION PROCESS FOR APPLYING MOLYBDENUM COATINGS ON THE COMPONENTS IN ASSEMBLY AND ENGINE CONSTRUCTION
    Alex Sagalovych, Viktor Popov, Vlad Sagalovych, Stas Dudnik, and Roman Popenchuk

    Private Company Technology Center
    The process of chemical vapor deposition of Mo and Mo-С coatings was studied by means of thermal decomposition of molybdenum hexacarbonyl. The kinetics of the coating growth in the range of 480 °C–540 °C and the pressure in the reaction volume from 9 Pa to 16 Pa were explored. The dependences of coating growth rate, the magnitudes of their microhardness on the parameters of their obtaining, as well as the changes in the morphology of the coating surface, roughness, and structure, were established. The tribological properties of the obtained coatings coupled with bronze Br.Su3H3S20F0.2 were explored at the friction machine 2070 SMT-1 according to the "cube–roller" scheme in a load interval of 0.2–1.4 kN. The lubrication during determining the friction coefficients was carried out by immersion of the movable counter body into a bath with fuel TC-1, GOST 10227-86. It was necessary to conduct such research because there is insufficient information when it comes to the specific equipment and peculiarities of the object onto which a coating is applied. When developing the process of coating application on specific components, techniques, and means to ensure the uniformity of parts heating and precursor feeding to their surface were tested. As a result of the conducted studies, we obtained the regions of parameters of obtaining coatings with different structure, rate, hardness, as well as the patterns of changes in these characteristics at the change of the basic parameters of the process of obtaining such coatings. Depending on application conditions, coatings may have hardness from ~11,000 MPa to 18,000 MPa at a growth rate from 50 μm/h to 170 μm/h. The mean values of the friction coefficient of coatings with different microstructure and microhardness were 0.101 at the load of 0.2 kN and 0.077 at the load of 1.4 kN. Based on the conducted research, it was possible to develop the process of applying the metal and metal-carbide molybdenum-based CVD coatings in regards to the components of the assembly and engine construction, which can serve as the basis for the development of industrial technologies

  • Mo-C multilayered CVD coetings


  • The tribological investigations of multicomponent multilayered ion-plasma coatings Avinit


RECENT SCHOLAR PUBLICATIONS

  • Plasma-chemical synthesis of carbide-based vacuum-plasma functional coatings and study of tribological characteristics of friction pairs
    A Sagalovych, V Popov, V Sagalovych, S Dudnik, O Oliinyk
    Mechanics and Advanced Technologies 8 (1 (100)) 2024

  • Vacuum plasma erosion resistant 2D nanocomposite coating Avinit for compressor blades of gas turbine engines of aircraft engines
    O Sagalovych, V Sagalovich, S Dudnik
    Authorea Preprints 2023

  • Molybdenum-carbide and tungsten-carbide CVD coatings obtained by Avinit vacuum-plasma technologies.
    A Sagalovych, S Dudnik, R Popenchuk, V Popov, V Sagalovych
    Available at SSRN 4526052 2023

  • The Vacuum-plasma Nanotechnologies Avinit
    O Sagalovych, V Sagalovych, SF Dudnik, V Popov
    2023

  • Вакуум-плазмові ерозійно-стійкі 2D-нанокомпозитні покриття Avinit для компресорних лопаток ГТД авіаційних двигунів.
    O Sagalovych, V Popov, O Kononyhin, V Sagalovych, S Dudnik, ...
    Mechanics and Advanced Technologies 7 (1), 7-15 2023

  • Tribological characteristics of samples made from titanium alloy VT5 nitrided in plasma glow discharge
    OO Alex SAGALOVYCH, Vladislav SAGALOVYCH1, Viktor POPOV, Stanislav DUDNIK
    Tribology and Materials 3 (1), 1-8 2022

  • The Influence of Ultra-dispersion Particles on Electron Density in SOFC Materials.
    A Sagalovych, V Sagalovych
    Available at SSRN 4209655 2022

  • Numerical modelling of diffusion decomposition processes
    AV Sagalovych, VV Sagalovich, VN Chabanovsky
    arXiv preprint arXiv:2208.07877 2022

  • Deposition of the stoichiometric coatings by reactive magnetron sputtering
    A Sagalovych, S Dudnik, V Sagalovych
    arXiv preprint arXiv:2207.13323 2022

  • ТРИБОЛОГІЧНІ ХАРАКТЕРИСТИКИ АЗОТОВАНИХ У ПЛАЗМІ ТЛІЮЧОГО РОЗРЯДУ ЗРАЗКІВ ІЗ ТИТАНОВОГО СПЛАВУ ВТ5 У ПАРАХ ІЗ РІЗНИМИ МАТЕРІАЛАМИ
    О Сагалович, В Сагалович, В Попов, С Дуднік, О Олійник
    Problems of Friction and Wear, 4-14 2022

  • ТРИБОЛОГІЧНІ ХАРАКТЕРИСТИКИ АЗОТОВАНИХ У ПЛАЗМІ ТЛІЮЧОГО РОЗРЯДУ ЗРАЗКІВ З ТИТАНОВОГО СПЛАВУ ВТ5 У ПАРАХ З РІЗНИМИ МАТЕРІАЛАМИ
    OAK Sagalovich V.V., Sagalovich A.V., Dudnik S.F., Popov V.V.
    ІНЖЕНЕРІЯ ПОВЕРХНІ ТА РЕНОВАЦІЯ ВИРОБІВ, 110-115 2022

  • Tribological characteristics of samples made from titanium alloy VT5 nitrided in plasma glow discharge
    A Sagalovych, V Sagalovych, V Popov, S Dudnik, O Olijnyk
    Tribol. Mater 1, 106-113 2022

  • Avinit vacuum-plasma technologies in transport machine building
    A Sagalovych, V Sagalovych, V Popov, S Dudnik, O Olijnyk
    SCIENTIFIC ROUTE OU 2021

  • Application of Avinit vacuum plasma technologies Avinit to the manufacture of high-precision full-size gears
    A Sagalovych, V Popov, V Sagalovych, S Dudnik, A Edinovych
    Available at SSRN 3940077 2021

  • Застосуванная вакуум-плазмових технологій Avinit до виготовлення повнорозмірних високоточних шестерен
    A Sagalovych, V Popov, V Sagalovych, S Dudnik, A Edinovych
    Mechanics and Advanced Technologies 5 (1), 79-88 2021

  • Застосування іонно-плазмових методів для отримання тонкоплівкових паливних елементів (Application of Ion-Plasma Methods To Obtain Thin-Film Fuel Cells)
    V Sagalovych, A Sagalovych, V Popov, S Dudnik, AV Kononykhin
    Available at SSRN 3821090 2021

  • The effect of obtaining conditions on the structure and composition of Cu-MoS2 coatings upon magnetron sputtering of composite targets
    A Sagalovych, S Dudnik, V Sagalovych, A Dzuiba, V Popov
    Available at SSRN 3821056 2021

  • Vacuum-plasma multilayer protective coatings for turbine blades
    A Sagalovych, V Sagalovych, S Dudnik, V Popov
    Available at SSRN 3813062 2021

  • Розробка дуплексної технології Avinit для підвищення зносостійкості сепаратора редуктора.
    A Sagalovych, V Popov, V Sagalovych, S Dudnik, A Edinovych, ...
    Mechanics and Advanced Technologies, 82-87 2020

  • Improving the performance, reliability and service life of aviation technology products based on the innovative vacuum-plasma nanotechnologies for application of avinit
    V Popov, A Sagalovych, V Sagalovych
    Reliability and Service Life of Aviation Technology Products Based on the 2020

MOST CITED SCHOLAR PUBLICATIONS

  • Development of the chemical vapor deposition process for applying molybdenum coatings on the components in assembly and engine construction
    A Sagalovych, V Popov, V Sagalovych, S Dudnik, R Popenchuk
    Eastern-European Journal of Enterprise Technologies 2 (12), 104 2020
    Citations: 15

  • Исследование характеристик трения и износа ионно-плазменных покрытий, полученных на алюминиевом сплаве
    CФ Дудник, АП Любченко, АК Олейник, АВ Сагалович, ВВ Сагалович
    Фізична інженерія поверхні, 112-116 2004
    Citations: 13

  • The Tribological Investigations of Multicomponent Multilayered Ion-Plasma Coatings Avinit
    A Sagalovych, V Sagalovych, A Kononyhin, V Popov
    Tribology in industry 33 (2), 79 2011
    Citations: 12

  • Improving the performance, reliability and service life of aviation technology products based on the innovative vacuum-plasma nanotechnologies for application of avinit
    V Popov, A Sagalovych, V Sagalovych
    Reliability and Service Life of Aviation Technology Products Based on the 2020
    Citations: 11

  • Vacuum-plasma protective coating for turbines blades
    OV Sagalovich, VV Sagalovich, VV Popov, SF Dudnik
    Igor Sikorsky Kyiv Polytechnic Institute 2020
    Citations: 9

  • Experimental research of multicomponent multilayer ion-plasma Avinit coatings
    A Sagalovych, AV Kononykhin, V Popov, V Sagalovych
    ФІП ФИП PSE 11 (1) 2013
    Citations: 9

  • Vacuum-plasma multilayer protective coatings for turbine blades
    A Sagalovych, V Sagalovych, S Dudnik, V Popov
    Available at SSRN 3813062 2021
    Citations: 8

  • Nanesenie pokrytii na slozhnoprofil'nye pretsizionnye poverkhnosti gazofaznym metodom (CVD)
    AV Sagalovich, AV Grigor’ev, AV Kononyhin, VV Popov, VV Sagalovich
    Fizicheskaya inzheneriya poverkhnosti 9 (3), 229-236 2011
    Citations: 8

  • Mo-C multilayered CVD coatings
    A Sagalovych, V Sagalovych
    Tribology in industry 35 (4), 261 2013
    Citations: 7

  • Experemental investigation Avinit type coatings
    AV Sagalovych, AV Kononyhin, VV Popov, SF Dudnik, VV Sagalovych
    Aviatsionno-kosmicheskaya tehnika i tehnologiya 3, 5-15 2011
    Citations: 5

  • Ustanovka Avinit dlia nanesennia bagatosharovikh funktsіonalnikh pokrittіv
    OV Sagalovich, OV Kononikhіn, VV Popov, CF Dudnіk, VV Sagalovich
    Fizicheskaia inzheneriia poverkhnosti 8, 336-347 2010
    Citations: 5

  • Разработка многокомпонентных покрытий для повышения износостойкости поверхностей пар трения в прецизионных узлах агрегатостроения
    АВ Сагалович, ВА Бабенко, CФ Дудник, ВВ Сагалович, АВ Кононыхин, ...
    Физическая инженерия поверхности 2007
    Citations: 5

  • Спосіб іонно-плазмового прецизійного азотування поверхонь сталей та сплавів Avinit N
    ОВ Сагалович, ВВ Сагалович
    Pat. UA
    Citations: 5

  • The method of ion-plasma precision nitriding of the surfaces of metal products
    VV Sagalovich, AV Sagalovich
    Patent
    Citations: 5

  • Deposition of the stoichiometric coatings by reactive magnetron sputtering
    A Sagalovych, S Dudnik, V Sagalovych
    arXiv preprint arXiv:2207.13323 2022
    Citations: 4

  • Development of Avinit duplex technology to increase the wear resistance of the gearbox separator
    A Sagalovych, V Popov, V Sagalovych, S Dudnik, A Edinovych, ...
    Igor Sikorsky Kyiv Polytechnic Institute 2020
    Citations: 4

  • The Antifrictional Coatings on the Molybdenum Base
    A Sagalovych, V Sagalovych, V Popov, AV Kononykhin, V Bogoslavzev
    Available at SSRN 4215395 2017
    Citations: 4

  • Comparative analysis of different plasma sources for reactive deposition of coatings and diffusion saturation of metals
    AV Sagalovich, VV Sagalovich, SV Dudin, VI Farenik
    Fizicheskaia inzheneriia poverkhnosti 9 (3), 229-236 2014
    Citations: 4

  • Eksperimental'nye issledovaniya pokrytii tipa Avinit, Aviatsionno-kosmicheskaya tekhnika i tekhnologiya. Tekhnologiya proizvodstva letatel'nykh apparatov
    AV Sagalovich
    T 1, 5-15 2011
    Citations: 4

  • Нанесение покрытий на сложнопрофильные прецизионные поверхности газофазным методом (CVD)
    АВ Сагалович, АВ Григорьев, АВ Кононыхин, ВВ Попов, ВВ Сагалович
    Фізична інженерія поверхні, 229-236 2011
    Citations: 4