Dr. Sweety Kadyan

@lavasa.christuniversity.in

Assistant Professor, Department of Data Science
CHRIST (Deemed to be University)



           

https://researchid.co/skadyan

EDUCATION

Doctor of Philosophy in Statistics

RESEARCH INTERESTS

Statistics, Reliability Theory, stochastic modelling

3

Scopus Publications

Scopus Publications

  • Stochastic analysis of a non-identical three units repairable system with operational priority to simultaneously working of identical units
    Suresh Chander Malik and Sweety Kadyan

    Emerald
    PurposeThe purpose of present study is to carry out stochastic analysis of some important reliability measures of a three-unit system where there are two types of units called type-I and type-II. In type-II, two identical units work simultaneously to meet the system requirements while in type-I, a single unit is kept in spare and can be used to work whenever required at the failure of either of the units of type-II. The system starts its operation with type-II units and thus priority is given to the operation of type-II units. The type II units are different to type-I unit but can perform the same task. There is a single server who handles repair activities of both type of units and the units are assumed to be in pristine condition after every repair. Failures of both types of units are independent and constant. The system can fail at the failure of either of the type-II units and type-I unit.Design/methodology/approachSemi-Markov process and regenerative point technique are used to study the behaviour of different reliability measures of the system.FindingsIn this paper, a three-unit non-identical repairable system is analysed stochastically and its reliability characteristics such as transition probabilities (TP), mean sojourn time (MST), MTSF, steady state availability, expected number of repairs of units, expected number of visits of the repairman and expected busy period of repairman are derived to carry out profit analysis.Research limitations/implicationsThe direct application of the present study can be seen is case of a power distribution system where solar panels may be considered as type-II units and transformer as the type-I unit. Here, the case study is carried out by using approximate data from some old studies; however, a study with accurate data would be more preferable.Originality/valueThis paper is one of the few reliability studies conducted on a system with simultaneous working units. Also, the comparative study of the profit of the present system model has been done with that of the model Kadyan et al. (2020a).

  • Stochastic Analysis of a Three-Unit Non-Identical Repairable System with Simultaneous Working of Cold Standby Units
    S. Kadyan, S. C. Malik, and Gitanjali

    River Publishers
    Here, stochastic analysis of a repairable system of three units has been carried out by taking one unit in operation (called main unit) and two identical units (called duplicate units) in cold standby. The switch device is used to convert the standby units into operative mode. A single server is hired to handle repair activities of the units who visits the system instantly whenever needed. The repair done by the server is perfect and thus the repaired unit follows the same lifetime distribution as the original. The constant failure rates are considered for both main and the duplicate units while their repair time distributions are taken as arbitrary. Some important reliability measures including mean sojourn times (MST), transition probabilities (TP), mean time to system failure (MTSF), availability, expected number of repairs for both kinds of units separately, expected number of visits by the server and busy period analysis of the server due to repair are determined using semi-Markov process (SMP) and regenerative point technique (RPT). The arbitrary values of the parameters are considered to examine the behaviour of some significant reliability measures through graphs. The possible application of the system model can be visualized in a power supply system of a house where a set of solar panels are kept in spare for their simultaneously working when main power supply is discontinued.