Ansam Salman

@nahrainuniv.edu.iq

Al- Nahrain university



                 

https://researchid.co/ansamm.salman

Ansam M. Salman received her B.Sc. degree and her M.Sc. degree in laser and optoelectronics engineering from Al-Nahrain University, Baghdad, Iraq, in 2006 and 2009, respectively. Currently, She is a lecturer at the laser and optoelectronics engineering department, Al-Nahrain University(IRAQ) and she is working towards her Ph.D. at the Institute of Laser for Postgraduate Studies, University of Baghdad, Iraq. Her research interest includes optical fiber lasers, optical fiber filters and optical fiber sensors.

EDUCATION

B.Sc. degree and her M.Sc. degree in laser and optoelectronics engineering from Al-Nahrain University, Baghdad, Iraq

21

Scopus Publications

231

Scholar Citations

8

Scholar h-index

8

Scholar i10-index

Scopus Publications

  • Wearable macro-bend optical fiber sensor for biomechanical motion evaluation
    Shahad Sabhan Al-Lami, Ansam M. Salman, and Abdulhadi Al-Janabi

    Elsevier BV

  • Skin-like and highly elastic optical fiber strain sensor based on a knot-bend shape for human motion monitoring
    Shahad Sabhan Al-Lami, Ansam M. Salman, and Abdulhadi Al-Janabi

    Optica Publishing Group
    A simply designed, highly sensitive, stretchable, compact wearable, and skin-like optical fiber sensing instrument is designed and demonstrated for joint motion monitoring. The fiber sensing scheme comprises only a section of single-mode fiber (SMF) deformed in the knot-like configuration, which performs as a Mach–Zehnder interferometer (MZI) based on a modal coupling mechanism between the core and cladding modes of the deformed SMF section. This proposed optical fiber sensor based on a knot-like configuration is mounted onto wearable woven fabric and then garments on the limbs of a healthy human’s body. As the flexion angle of the human limb is varied, the interference fringe coding based on the spectral shift difference of the periodical transmission spectra is perceived. The proposed wearable optical fiber sensor exhibits excellent sensitivities from around −0.431 to −0.614nm/∘ realized for elbow and knee joint flexion between a range of motion around 0°–90°. Additionally, this sensor also displays high repeatability and stability and a fast response time of 1.4 ms, combined with a small standard deviation of about 2.585%. The proposed sensor device possesses manufacturing simplicity, high processing accuracy, lightness, and elasticity, as well as certain improvements over other goniometers and optical fiber sensors. These attributes of the proposed sensor prove its applicability for human joint angle monitoring.

  • Safe and efficient dental cavity preparation by applying a gradient-in-power approach from Er,Cr:YSGG laser: an in-vitro study
    Alyamama MH. Al-Shammari, Ansam M. Salman, and Abdulhadi Al-janabi

    Optica Publishing Group
    In this in-vitro study, a gradient-in-power approach aims to ensure no temperature elevation beyond the necrosis limit (5.5 °C) during laser cavity preparation of dental hard tissues. The applied optimal Er,Cr:YSGG laser parameters were: 20 Hz pulse repetition rates (prr), average powers at a maximum of 5.5 W for enamel switched to a maximum of 3.5 W for dentine surface specimens. A fabricated fast-response all-optical fiber sensor was used to monitor temperature change simultaneously. A scanning electron microscope (SEM) and a Fourier transform infrared (FTIR) spectroscopy were used to assess the irradiated surfaces. Holes of 500 µm in depth were obtained with no morphological and chemical alterations.

  • Weaving-based wearable sensing instrument designed for the joint motion monitoring of the elbow and knee flexion angle
    Shahad Sabhan Al-Lami, Ansam M. Salman, and Abdulhadi Al-Janabi

    Optica Publishing Group
    This work presents a wearable optical fiber sensing scheme based on an eight-figure macro-bend fiber configuration. The wearable sensor scheme utilizes a single-mode fiber deformed on an eight-figure configuration. The fabricated optical fiber sensor is mounted onto a wearable woven fabric and then garment on the elbow and knee joints of different healthy volunteers’ bodies. The proposed wearable biomechanical sensor shows an excellent sensitivity correlated with the human knee and elbow joints’ range of motion 0°-90° which is about −0.963 nm/°, with good regression coefficients (R2) exceeding 99.6%, for elbow joint flexion and sensitivity of 0.874 nm/° with a high R2 exceeding 99.4% for knee flexion. Besides, this sensor also displays high repeatability and stability and a fast response time of 1.66 ms, combined with a small standard deviation of about 2.321%. So, the planned wearable optical fiber sensor system is a practicable option for monitoring joint motion, human movement analysis, and soft robots.

  • Wide-range and highly sensitive pH sensor based on a figure-eight fiber structure coated with copper/polyvinyl alcohol hydrogel
    Ansam M. Salman, Sarah Kadhim Al-Hayali, and Abdul Hadi Al-Janabi

    Optica Publishing Group
    Construction of pH sensors based on optical fiber encapsulated copper (Cu-NPs) has been accomplished. Briefly, a length of single-mode fiber (SMF) of about 25 cm has been wrapped in two rings by twisting one side of the fiber on the other from both ends to form a figure-eight shape. To upsurge the sensitivity, the sensor configuration has been immobilized with copper nanoparticles/polyvinyl alcohol hydrogel (Cu/PVA) composite. The Cu/PVA composite was employed to shape a membrane structure on the sensing active length by laminating it using the dip-coating method. The wavelength interrogation method was employed to evaluate the sensitivity of the fabricated pH sensor. The fabricated fiber pH sensor exhibits a sigmoidal response above a wide range of pH from 1 to 14. The result displays a superior sensitivity of ∼4.8 nm/pH for a range of 1-7 pH and 3.86 nm/pH for the range of 8-14 pH with an excellent linear response. Besides the great sensitivity, the dual-parameters measurement of pH and refractive index was effectively accomplished with perfect stability. The proposed fiber sensor possesses a superior performance compared with the other sensors.

  • Low-cost high-sensitivity pH sensor based on a droplet-shaped single-mode fiber Mach–Zehnder interferometer
    Sarah Kadhim Al-Hayali, Ansam M. Salman, and Abdul Hadi Al-Janabi

    Elsevier BV


  • Sensitivity-Enhanced Moisture Sensor Based on ?-shape Bending Fiber Coated with Copper-Polyvinyl Alcohol Thin Film
    Ansam M. Salman, Sarah Kadhim Al-Hayali, and Abdulhadi Al-Janabi

    Institute of Electrical and Electronics Engineers (IEEE)

  • Hybrid nanocomposite film provides FWM and Fabry Perot Filter: Towards multi-wavelength fiber laser generation in 1 µm region
    Ansam M. Salman, Sarah Kadhim Al-Hayali, Rawaa A. Faris, and Abdulhadi Al-Janabi

    Optik Elsevier BV

  • Highly efficient optical fiber sensor for instantaneous measurement of elevated temperature in dental hard tissues irradiated with an Nd:YaG laser
    Zahraa J. Naeem, Ansam M. Salman, Rawaa A. Faris, and Abdulhadi Al-Janabi

    Applied Optics The Optical Society

  • Stable evanescent wave mode-locked laser based on a photonic-crystal-fiber-induced Mach-Zehnder filter as a gain-tilt equalizer
    Fay F. Ridha, Ansam M. Salman, and Abdulhadi Al-Janabi

    Applied Optics The Optical Society

  • Effect of hygroscopic polymer-coatings on the performance of relative humidity sensor based on macro-bend single-mode fiber
    Sarah Kadhim Al-Hayali, Ansam M. Salman, and Abdul Hadi Al-Janabi

    Optical Fiber Technology Elsevier BV

  • Titania-carbon nanocomposite as a saturable absorber for generation passively ytterbium-mode locked pulses
    Ali H. Abdalhadi, Ansam M. Salman, Rawaa A. Faris, and Abdulhadi Al-Janabi

    Optical Materials Elsevier BV
    Abstract Passively pulse dual-wavelength ytterbium-doped fiber laser (YDFL) around 1 μm utilizing titania–carbon nanocomposite (TiO2–C NC) thin film as the optical modulator is experimentally demonstrated. The TiO2–C NC thin-film reveals great nonlinear saturable absorption characteristics with a transmission difference of 24.06% at the lasing emission around the 1 μm region. Stable self-starting mode-locked emission with a pulse of ~8 ns and a repetition rate of 30.7 MHz was achieved at threshold exciting power of about 115 mW. By adapting the polarization controller (PC) together with the pump power, fundamental, third, and sixth harmonic frequencies can be switched to each other. The corresponding pulse durations to the third and sixth harmonic mode-locked were 6.8 and 1.8 ns, respectively. The corresponding maximum output power was 1.8 mW. This work opens up another way to build cost-effective, greatly stable optical modulators, and presents the option to build novel nanocomposite-based photonic devices with TiO2–C NC.

  • High sensitivity balloon-like interferometric optical fiber humidity sensor based on tuning gold nanoparticles coating thickness
    Sarah Kadhim Al-Hayali, Ansam M. Salman, and Abdul Hadi Al-Janabi

    Measurement: Journal of the International Measurement Confederation Elsevier BV
    Abstract We report on the effect of gold nanoparticles (Au-NPs) coating thickness on the sensitivity of a relative humidity (RH) sensor based on a balloon-shaped single-mode fiber (BSBS) structure for the first time. The BSBS structure was established by bending a coated single-mode fiber (SMF) into a balloon shape by using a section of a capillary tube. Three structures with various gold nanocoated sensing have been fabricated to select the optimal thickness. The thicknesses of the Au-NPs were 10, 20, and 30 nm. The performance of each structure towards different RH levels ranged from 35% to 95% was experimentally investigated. Experimentations showed that the RH sensor with a nanocoating thickness of 20 nm exhibits the highest sensitivity of -0.571 nm/RH with an ultra-fast response time of 1.41ms. Overall, the results point out that increasing or decreasing the coating thicknesses than the optimum thickness leads to a decrease in sensor sensitivity.

  • High-sensitivity balloon-like thermometric sensor based on bent single-mode fiber
    Dunia I Al-Janabi, Ansam M Salman, and Abdulhadi Al-Janabi

    Measurement Science and Technology IOP Publishing
    A simple and compact temperature sensor based on a Mach-Zehnder modal interferometer has been fabricated by bending a single-mode fiber into a balloon-like configuration. Three Different fiber sections: fiber without stripping, fiber with a stripped-off protective coating, and a fibre with a polyvinyl alcohol (PVA) coating have been utilized, each with a small bending diameter of 1 cm that mimics a balloon-like shape. The PVA-coated segment sensor structure showed the highest sensitivity of ~−1.492 nm/°C, a fast response time of ~2.78 ms and a good resolution of ~3 × 10−4°C, for the temperature range 30-55oC benefiting from the good thermo-optical properties of PVA. This sensor can potentially be used in various temperature monitoring processes such as food industries, chemical analysis, detections of molecular analysis, and label-free biomedicine.

  • All fiber, highly sensitive sensor based on gold nanoparticle-coated macrobent single mode fiber for human temperature monitoring
    Dunia I. Al-Janabi, Ansam M. Salman, and Abdulhadi Al-Janabi

    Journal of Nanophotonics SPIE-Intl Soc Optical Eng
    Abstract. A compact all-fiber temperature sensor based on a gold nanoparticle (GNP)-coated macrobent standard single-mode fiber (SMF) has been proposed and experimentally demonstrated. It can be easily constructed by just bending an SMF into a suitable bending radius to constitute a Mach–Zehnder modal interferometer. The sensing area of the bent SMF was coated with GNP utilizing the magnetron sputtering technique. Different tuned GNP thicknesses of ∼10, 20, and 30 nm were deposited on different bent fibers and the temperature-sensing performance was examined experimentally. Throughout the experiments, the wavelengths of the monitored interference dips decreased gradually and were blueshifted with an increase in temperature in the range of 35°C to 47°C. Among the three coated sensing heads, the proposed sensor coated by an ∼20-nm layer thickness of GNP showed the best performance with excellent sensitivity, fast rise time, and an excellent resolution of −2.56  nm  /  °C, 1.73 ms, and 1.82  ×  10  −  4°C, respectively. Benefiting from its excellent advantages of simple configuration, easy fabrication, and high mechanical strength, this high-sensitivity temperature sensor could be a competitive candidate for precise temperature measurement of the human body.

  • Nickel Nanoparticles Saturable Absorber for Multiwavelength Pulses Generation in Ytterbium-Doped Fiber Laser
    Ansam M. Salman and Abdulhadi Al-Janabi

    Fiber and Integrated Optics Informa UK Limited
    ABSTRACT We report on the generation of multiwavelength Q-switched pulses from a Ytterbium-doped fiber laser (YDFL) cavity by employing a nickel nanoparticle (Ni-NPs) thin film as an optical modulator. Owing to the high nonlinearity of Ni-NPs and the distinguished saturable absorption property, stable single-, dual-, triple-, or quadruple-line, Q-switched generation with a 0.7 nm channel spacing have been achieved by simply adjusting the 976 nm pump power to between 144–290 mW. At the maximum diode pump power, the output obtained from Ytterbium-doped fiber laser (YDFL) has a minimum pulse width of 138.7 ns, a maximum repetition rate of 82.4 kHz, a maximum pulse energy of 9.1 nJ and a maximum output power of 777.14 µW.

  • Nickel nanoparticles-based saturable absorber: Toward compact multiwavelength Yb-doped fiber pulsed lasers near 1 μm region
    Ansam M. Salman and Abdulhadi Al‐Janabi

    Microwave and Optical Technology Letters Wiley

  • Ni-NPs doped PVA: An efficient saturable absorber for generation multiwavelength Q-switched fiber laser system near 1.5 μm
    Ansam M. Salman and Abdulhadi Al-Janabi

    Elsevier BV
    Abstract We report on the use of Nickel nanoparticles (Ni-NPs) as saturable absorber (SA) to generate Q-switched fiber laser pulses in C-band. The Ni-NPs were incorporated in polyvinyl alcohol (PVA) to produce thin film-based saturable absorber (SA) and integrated into an erbium-doped fiber laser (EDFL) ring cavity to generate passively Q-switching. The Ni-doped PVA SA reveals modulation depth of 15% and a saturation intensity of 200 MW/cm2. Lasing in CW region begins at 77 mW pump power, whereas stable self-starting Q-switching with a central wavelength of 1563.1 nm begins at 85 mW. By fine adjustment of the laser diode pump power up to 236.4 mW dual-, and triple- lasing lines have been observed at 1563.1, 1563.3 and 1563.4 with side mode suppression ratio (SMSR) of more than 49 dB. The proposed laser is useful for generating pulse laser with a minimum pulse width of 1.5 μs and a maximum repetition rate of 56.79 kHz with a pulse energy of about 4.33 nJ at the maximum pump power of 275 mW. The stability of the pulse is verified from the radio-frequency (RF) spectrum with a measured signal-to-noise ratio (SNR) of 44 dB. The ability of Ni-PVA as an effective SA may lead to further development of pulsed fiber laser in the field of photonics.

  • Stable L-band multiwavelength erbium-doped fiber laser based on four-wave mixing using nickel nanofluid
    Ansam M. Salman, Ali A. Salman, and Abdulhadi Al-Janabi

    The Optical Society
    A simple continuous-wave multiwavelength erbium-doped fiber laser based on four-wave mixing has been successfully demonstrated utilizing nickel nanofluid (Ni-NF) for the first time, to the best of our knowledge. By fine adjustment of the laser diode pump power up to 196 mW and without any intracavity filtering, stable dual-, triple-, and quadruple-lasing lines in the L-band have been observed at 1595.6 nm, 1596.8 nm, 1598 nm, and 1599.2 nm, respectively, with a signal-to-noise ratio ∼43  dB. The induced L-band wavelengths showed high stability with wavelength shifts <0.07  nm and power fluctuation of <3  dB by monitoring the output spectra for a duration of 30 min at room temperature. Taking into account the superiority of Ni-NF in terms of compactness, low cost, and easy fabrication, this design can be practically used in a variety of nonlinear photonic applications.

  • Nonlinear properties and optical limiting of olive oil by using z-scan technique
    Amal F. Jaffar, Ansam M. Salman, Israa N. Akram, and Anwaar A. Al. Dergazly

    IEEE
    A simplified and sensitive experimental technique named z-scan has been used in this work, to study the optical nonlinearity and optical limiting of olive oil. Olive oil is classified as organic compounds which have a good nonlinear optical properties candidate to be used in photonic applications. A high purity sample of olive oil has been subjected to spectrophotometer to determine the transmission spectrum using UV-VIS spectrophotometer. The nonlinear optical properties represented by nonlinear refractive index and nonlinear absorption coefficient are determined by using a CW of 532 nm in two parts. The first part has been done using a closed aperture (with two different diameter 1 mm and 2 mm) placed in front of the detector to measure the nonlinear refractive index which exhibits negative refractive index (defocusing). Second part was done using an open aperture to measure the nonlinear absorption coefficient, where the samples exhibit two photon absorption behavior under the experimental conditions. Real and imaginary parts of the third-order optical nonlinearity, χ(3) were evaluated. The third-order nonlinearity of olive oil is dominated by nonlinear absorption, which leads to strong optical limiting of the laser.

RECENT SCHOLAR PUBLICATIONS

  • No-core optical fiber sensor based on surface plasmon resonance for temperature measurement
    NA Mohamad, AH Ali, A Al-Askery, A Majid, HQ Moham
    2023 7th International Symposium on Innovative Approaches in Smart 2024

  • Wearable macro-bend optical fiber sensor for biomechanical motion evaluation
    SS Al-Lami, AM Salman, A Al-Janabi
    Optical Fiber Technology 81, 103560 2023

  • Skin-like and highly elastic optical fiber strain sensor based on a knot-bend shape for human motion monitoring
    SS Al-Lami, AM Salman, A Al-Janabi
    Applied Optics 62 (33), 8958-8967 2023

  • Weaving-based wearable sensing instrument designed for the joint motion monitoring of the elbow and knee flexion angle
    SS Al-Lami, AM Salman, A Al-Janabi
    Optics Continuum 2 (9), 1967-1980 2023

  • Safe and efficient dental cavity preparation by applying a gradient-in-power approach from Er, Cr: YSGG laser: an in-vitro study
    AMH Al-Shammari, AM Salman, A Al-janabi
    Optics Continuum 2 (4), 917-932 2023

  • Wide-range and highly sensitive pH sensor based on a figure-eight fiber structure coated with copper/polyvinyl alcohol hydrogel
    AM Salman, SK Al-Hayali, AH Al-Janabi
    Optical Materials Express 12 (9), 3763-3775 2022

  • Low-cost high-sensitivity pH sensor based on a droplet-shaped single-mode fiber Mach–Zehnder interferometer
    SK Al-Hayali, AM Salman, AH Al-Janabi
    Optical Fiber Technology 71, 102944 2022

  • Fe2O3-SiO2 nanocomposite film-induced high nonlinear effect for multiwavelength mode-locked generation in ytterbium-doped fiber laser
    AM Salman, RA Faris, A Al-Janabi
    Materials Today Communications 30, 103068 2022

  • Hybrid nanocomposite film provides FWM and Fabry Perot Filter: Towards multi-wavelength fiber laser generation in 1 m region
    AM Salman, SK Al-Hayali, RA Faris, A Al-Janabi
    Optik 242, 167375 2021

  • Sensitivity-enhanced moisture sensor based on θ-shape bending fiber coated with copper-polyvinyl alcohol thin film
    AM Salman, SK Al-Hayali, A Al-Janabi
    IEEE Sensors Journal 21 (19), 21546-21554 2021

  • Highly efficient optical fiber sensor for instantaneous measurement of elevated temperature in dental hard tissues irradiated with an Nd: YaG laser
    ZJ Naeem, AM Salman, RA Faris, A Al-Janabi
    Applied Optics 60 (21), 6189-6198 2021

  • Stable evanescent wave mode-locked laser based on a photonic-crystal-fiber-induced Mach–Zehnder filter as a gain-tilt equalizer
    FF Ridha, AM Salman, A Al-Janabi
    Applied Optics 60 (12), 3290-3301 2021

  • Effect of hygroscopic polymer-coatings on the performance of relative humidity sensor based on macro-bend single-mode fiber
    SK Al-Hayali, AM Salman, AH Al-Janabi
    Optical Fiber Technology 62, 102460 2021

  • Titania-carbon nanocomposite as a saturable absorber for generation passively ytterbium-mode locked pulses
    AH Abdalhadi, AM Salman, RA Faris, A Al-Janabi
    Optical Materials 112, 110728 2021

  • High sensitivity balloon-like interferometric optical fiber humidity sensor based on tuning gold nanoparticles coating thickness
    SK Al-Hayali, AM Salman, AH Al-Janabi
    Measurement 170, 108703 2021

  • All fiber, highly sensitive sensor based on gold nanoparticle-coated macrobent single mode fiber for human temperature monitoring
    DI Al-Janabi, AM Salman, A Al-Janabi
    Journal of Nanophotonics 14 (4), 046013-046013 2020

  • High-sensitivity balloon-like thermometric sensor based on bent single-mode fiber
    DI Al-Janabi, AM Salman, A Al-Janabi
    Measurement Science and Technology 31 (11), 115106 2020

  • Nickel nanoparticles Saturable absorber for multiwavelength pulses generation in ytterbium-doped Fiber laser
    AM Salman, A Al-Janabi
    Fiber and Integrated Optics 39 (3), 109-121 2020

  • Nickel nanoparticles‐based saturable absorber: Toward compact multiwavelength Yb‐doped fiber pulsed lasers near 1 μm region
    AM Salman, A Al‐Janabi
    Microwave and Optical Technology Letters 62 (3), 984-992 2020

  • Ni-NPs doped PVA: An efficient saturable absorber for generation multiwavelength Q-switched fiber laser system near 1.5 μm
    AM Salman, AbdulhadiAl-Janabi
    Optical Materials 98, 109418 2019

MOST CITED SCHOLAR PUBLICATIONS

  • High sensitivity balloon-like interferometric optical fiber humidity sensor based on tuning gold nanoparticles coating thickness
    SK Al-Hayali, AM Salman, AH Al-Janabi
    Measurement 170, 108703 2021
    Citations: 36

  • High-sensitivity balloon-like thermometric sensor based on bent single-mode fiber
    DI Al-Janabi, AM Salman, A Al-Janabi
    Measurement Science and Technology 31 (11), 115106 2020
    Citations: 29

  • Stable L-band multiwavelength erbium-doped fiber laser based on four-wave mixing using nickel nanofluid
    AM Salman, AA Salman, A Al-Janabi
    Applied Optics 58 (22), 6136-6143 2019
    Citations: 22

  • Effect of hygroscopic polymer-coatings on the performance of relative humidity sensor based on macro-bend single-mode fiber
    SK Al-Hayali, AM Salman, AH Al-Janabi
    Optical Fiber Technology 62, 102460 2021
    Citations: 19

  • All fiber, highly sensitive sensor based on gold nanoparticle-coated macrobent single mode fiber for human temperature monitoring
    DI Al-Janabi, AM Salman, A Al-Janabi
    Journal of Nanophotonics 14 (4), 046013-046013 2020
    Citations: 19

  • Titania-carbon nanocomposite as a saturable absorber for generation passively ytterbium-mode locked pulses
    AH Abdalhadi, AM Salman, RA Faris, A Al-Janabi
    Optical Materials 112, 110728 2021
    Citations: 17

  • Ni-NPs doped PVA: An efficient saturable absorber for generation multiwavelength Q-switched fiber laser system near 1.5 μm
    AM Salman, AbdulhadiAl-Janabi
    Optical Materials 98, 109418 2019
    Citations: 11

  • Low-cost high-sensitivity pH sensor based on a droplet-shaped single-mode fiber Mach–Zehnder interferometer
    SK Al-Hayali, AM Salman, AH Al-Janabi
    Optical Fiber Technology 71, 102944 2022
    Citations: 10

  • Hybrid nanocomposite film provides FWM and Fabry Perot Filter: Towards multi-wavelength fiber laser generation in 1 m region
    AM Salman, SK Al-Hayali, RA Faris, A Al-Janabi
    Optik 242, 167375 2021
    Citations: 8

  • Sensitivity-enhanced moisture sensor based on θ-shape bending fiber coated with copper-polyvinyl alcohol thin film
    AM Salman, SK Al-Hayali, A Al-Janabi
    IEEE Sensors Journal 21 (19), 21546-21554 2021
    Citations: 8

  • Nickel nanoparticles Saturable absorber for multiwavelength pulses generation in ytterbium-doped Fiber laser
    AM Salman, A Al-Janabi
    Fiber and Integrated Optics 39 (3), 109-121 2020
    Citations: 7

  • Nickel nanoparticles‐based saturable absorber: Toward compact multiwavelength Yb‐doped fiber pulsed lasers near 1 μm region
    AM Salman, A Al‐Janabi
    Microwave and Optical Technology Letters 62 (3), 984-992 2020
    Citations: 7

  • Wide-range and highly sensitive pH sensor based on a figure-eight fiber structure coated with copper/polyvinyl alcohol hydrogel
    AM Salman, SK Al-Hayali, AH Al-Janabi
    Optical Materials Express 12 (9), 3763-3775 2022
    Citations: 6

  • Fe2O3-SiO2 nanocomposite film-induced high nonlinear effect for multiwavelength mode-locked generation in ytterbium-doped fiber laser
    AM Salman, RA Faris, A Al-Janabi
    Materials Today Communications 30, 103068 2022
    Citations: 6

  • Nonlinear properties and optical limiting of olive oil by using z-scan technique
    AF Jaffar, AM Salman, IN Akram, AAA Dergazly
    2012 First National Conference for Engineering Sciences (FNCES 2012), 1-8 2012
    Citations: 6

  • Highly efficient optical fiber sensor for instantaneous measurement of elevated temperature in dental hard tissues irradiated with an Nd: YaG laser
    ZJ Naeem, AM Salman, RA Faris, A Al-Janabi
    Applied Optics 60 (21), 6189-6198 2021
    Citations: 5

  • Stable evanescent wave mode-locked laser based on a photonic-crystal-fiber-induced Mach–Zehnder filter as a gain-tilt equalizer
    FF Ridha, AM Salman, A Al-Janabi
    Applied Optics 60 (12), 3290-3301 2021
    Citations: 4

  • Safe and efficient dental cavity preparation by applying a gradient-in-power approach from Er, Cr: YSGG laser: an in-vitro study
    AMH Al-Shammari, AM Salman, A Al-janabi
    Optics Continuum 2 (4), 917-932 2023
    Citations: 3

  • Studying of laser tissue interaction using biomedical tissue
    AM Salman, AF Jaffar, AAJ Al-Taie
    Al-Nahrain Journal for Engineering Sciences 20 (4), 894-903 2017
    Citations: 3

  • NONLINEAR PROPERTIES OF OLIVE OIL FILMS DOPED WITH POLY (METHYL METHACRYLATE), POLYSTYRENE AND THEIR BLEND BY USING Z-SCAN TECHNIQUE
    Amal F. Jaffar, Israa N. Akram, Ansam M. Salman, Qusay Raghib Ali Al-Taai
    INTERNATIONAL JOURNAL OF ADVANCED TECHNOLOGY IN ENGINEERING AND SCIENCE 3 2015
    Citations: 3