@ivl.se
IVL Swedish Environmental Research Institute
Analytical Chemistry, Pollution, Environmental Science, Waste Management and Disposal
Scopus Publications
Scholar Citations
Scholar h-index
Scholar i10-index
Ioannis Liagkouridis, Georgios Giovanoulis, and Gunnar Thorsén
Elsevier BV
Peter Haglund, Nikiforos A. Alygizakis, Adrian Covaci, Lisa Melymuk, Pernilla Bohlin Nizzetto, Pawel Rostkowski, Alexandre Albinet, Sylvana Alirai, Dagny Aurich, Stefan Bieber,et al.
Elsevier BV
Johan Strandberg, Hannes Waldetoft, Liselotte Egelrud, Arvid Backlund, Claudia Cascone, Gunnar Thorsén, Annika Potter, and Georgios Giovanoulis
OAE Publishing Inc.
Fuel spills pose significant environmental risks, particularly to drinking water sources and aquatic ecosystems. The composition of fuels has changed over the decades to reduce fossil greenhouse gas emissions. In Sweden, although the number of spill incidents has declined, with around 600 cases reported annually, there remains limited knowledge on the environmental and health impacts of modern fuels. This study aimed to address this gap through comprehensive chemical analysis and ecotoxicological assessments of 31 fuel samples, including petrol, diesel, fuel oil, and marine gas oil. Using gas chromatography-mass spectrometry (GC-MS), we determined 53 substances, including aromatic and aliphatic hydrocarbons, ethers, esters, and 17 polycyclic aromatic hydrocarbons (PAHs). A key focus was on forming a stable water-accommodated fraction (WAF) to isolate non-dissolved fuel elements from water, which is crucial for assessing subsurface aquatic life and drinking water production impacts. Results indicated significant differences in fuel odor profiles, with ethers enhancing odor intensity. Petrol components showed higher water solubility than diesel, partly due to ethanol. Ecotoxicological tests revealed varying toxicity across fuels, with petrol showing the highest toxicity to aquatic organisms, although activated sludge exhibited resilience. Fuels containing water-soluble ethers posed the highest risks to drinking water, while modern diesel was of lower concern due to its low solubility and toxicity. In freshwater ecosystems, petrol and hydrophobic toxins in fuel oil had severe effects during spills. Overall, this study offers critical insights into the environmental impact of common fuels, supporting improved risk assessment and management strategies for spill mitigation and water resource protection.
Abdul Qadeer, Muhammad Anis, Genoa R. Warner, Courtney Potts, Georgios Giovanoulis, Samia Nasr, Denisse Archundia, Qinghuan Zhang, Zeeshan Ajmal, Anthony C. Tweedale,et al.
Royal Society of Chemistry (RSC)
The global plasticizer market is projected to increase from $17 billion in 2022 to $22.5 billion in 2027.
Sarka Langer, Charles J. Weschler, Gabriel Bekö, Glenn Morrison, Ann Sjöblom, Georgios Giovanoulis, Pawel Wargocki, Nijing Wang, Nora Zannoni, Shen Yang,et al.
American Chemical Society (ACS)
A major component of human skin oil is squalene, a highly unsaturated hydrocarbon that protects the skin from atmospheric oxidants. Skin oil, and thus squalene, is continuously replenished on the skin surface. Squalene is also quickly consumed through reactions with ozone and other oxidants. This study examined the extent of squalene depletion in the skin oils of the forearm of human volunteers after exposure to ozone in a climate chamber. Temperature, relative humidity (RH), skin coverage by clothing, and participants' age were varied in a controlled manner. Concentrations of squalene were determined in skin wipe samples collected before and after ozone exposure. Exposures to ozone resulted in statistically significant decreases in post-exposure squalene concentrations compared to pre-exposure squalene concentrations in the skin wipes when squalene concentrations were normalized by concentrations of co-occurring cholesterol but not by co-occurring pyroglutamic acid (PGA). The rate of squalene loss due to ozonolysis was lower than its replenishment on the skin surface. Within the ranges examined, temperature and RH did not significantly affect the difference between normalized squalene levels in post-samples versus pre-samples. Although not statistically significant, skin coverage and age of the volunteers (three young adults, three seniors, and three teenagers) did appear to impact squalene depletion on the skin surfaces.
Erica Selin, Mimmi Wänn, Kettil Svensson, Erik Gravenfors, Georgios Giovanoulis, Agneta Oskarsson, and Johan Lundqvist
Springer Science and Business Media LLC
Abstract Background Food contact articles are used in our everyday life and information regarding the potential health hazards of migrating chemicals for humans is scarce. In this study, an effect-based evaluation of non-polar extracts of food contact articles made of paper and board was conducted with a panel of eight bioassay endpoints. These, health-relevant endpoints, included oxidative stress, inflammation, genotoxicity, xenobiotic metabolism and hormone receptor effects. Results In total, 62 food contact articles were pooled into 19 groups, in which articles intended to be used for similar types of food item(s) were pooled, and extracted with acetone:n-hexane (1:4). These were then tested in the effect-based bioassays. Bioactivities were detected for multiple materials in six out of eight assays, the two assays showing no effects were NFκB and androgen receptor agonistic response. In essence, the detection rates of the tested non-polar extracts were 72% for antagonistic effects on the estrogen receptor, 72% for antagonistic effects on the androgen receptor, 47% for oxidative stress, 28% for agonistic effects on the estrogen receptor and 33% for genotoxicity. The bioequivalent concentrations ranges in extracts of 10 mg food contact article/mL cell culture media were: for oxidative stress from 2.45 to 5.64 µM tBHQ equivalents, estrogen receptor agonistic activity from 1.66 to 6.33 ρM estradiol equivalents, estrogen receptor antagonistic activity from 1.21 × 10–3 to 4.20 × 10–3 μM raloxifene equivalents and androgen antagonistic activity 0.08–0.46 μM hydroxyflutamide equivalents. The extracts that were bioactive in multiple assays were: baking moulds, boxes for popcorn, infant formula/skimmed milk, porridge/flour mixes, pizza, fries’ and hamburgers as well as packages for frozen food. Conclusion Non-polar extracts of food contact articles contain compounds that can activate molecular initiating events in toxicity pathways of high relevance to human health. These events included endocrine-disruptive activities, oxidative stress and genotoxicity. Effect-based methods proved to be a valuable tool for evaluating food package articles, as they can detect potentially hazardous effects of both known and unknown chemicals as well as potential cocktail effects.
Sarka Langer, Cynthia A. de Wit, Georgios Giovanoulis, Jenny Fäldt, and Linnéa Karlson
Hindawi Limited
Young children spend a substantial part of their waking time in preschools. It is therefore important to reduce the load of hazardous semivolatile organic compounds (SVOCs) in the preschools' indoor environment. The presence and levels of five SVOC groups were evaluated (1) in a newly built preschool, (2) before and after renovation of a preschool, and (3) in a preschool where SVOC-containing articles were removed. The new building and the renovation were performed using construction materials that were approved with respect to content of restricted chemicals. SVOC substance groups were measured in indoor air and settled dust and included phthalates and alternative plasticizers, organophosphate esters (OPEs), brominated flame retardants, and bisphenols. The most abundant substance groups in both indoor air and dust were phthalates and alternative plasticizers and OPEs. SVOC concentrations were lower or of the same order of magnitude as those reported in comparable studies. The relative Cumulative Hazard Quotient (HQcum ) was used to assess the effects of the different reduction measures on children's SVOC exposure from indoor air and dust in the preschools. HQcum values were low (1.0-6.1%) in all three preschools and decreased further after renovation and article substitution. The SVOCs concentrations decreased significantly more in the preschool renovated with the approved building materials than in the preschool where the SVOC-containing articles were removed.
Erica Selin, Kettil Svensson, Erik Gravenfors, Georgios Giovanoulis, Mitsura Iida, Agneta Oskarsson, and Johan Lundqvist
Informa UK Limited
ABSTRACT Food contact materials (FCMs) can contain hazardous chemicals that may have the potential to migrate into food and pose a health hazard for humans. Previous studies have mainly focused on plastic materials, while data on packaging materials made from paper and cardboard are limited. We used a panel of cell-based bioassays to investigate the presence and impact of bioactive chemicals on human relevant endpoints like oxidative stress, genotoxicity, inflammation, xenobiotic metabolism and endocrine system effects in extracts made from paper and cardboard. In total, 23 methanol extracts of commonly used paper and cardboard available on the Swedish market were extracted as a whole product using methanol to retrieve polar substances, and tested at concentrations 0.3–10 mg/mL and 0.2–6 mg/mL. At the highest concentration bioactivities were observed in a high proportion of the samples: oxidative stress (52%), genotoxicity (100%), xenobiotic metabolism (74%), antiandrogenic- (52%) and antioestrogenic receptor (39%). Packages of potential concern included cake/pastry boxes/mats, boxes for infant formula/skimmed milk, pizza boxes, pizza slice trays and bag of cookies. It should be noted that the extraction for packages like cake/pastry boxes can be considered exaggerated, as the exposure usually is shorter. It can be hypothesised that the observed responses may be explained by inks, coatings, contaminants and/or naturally occurring compounds within the material. To summarise, an effect-based approach enables hazard identification of chemicals within FCMs, which is a valuable tool for ensuring safe use of FCMs. Graphical Abstract
Georgios Giovanoulis, Thuy Bui, Fuchao Xu, Eleni Papadopoulou, Juan A. Padilla-Sanchez, Adrian Covaci, Line S. Haug, Anna Palm Cousins, Jörgen Magnér, Ian T. Cousins,et al.
Elsevier BV
Georgios Giovanoulis, Minh Anh Nguyen, Maria Arwidsson, Sarka Langer, Robin Vestergren, and Anne Lagerqvist
Elsevier BV
Somrutai Poothong, Juan Antonio Padilla-Sánchez, Eleni Papadopoulou, Georgios Giovanoulis, Cathrine Thomsen, and Line Småstuen Haug
American Chemical Society (ACS)
The indoor environment contributes considerably to human exposure to poly- and perfluoroalkyl substances (PFASs). This study estimated the human exposure to PFASs from the indoor environment through hand-to-mouth and dermal contacts using hand wipes. An analytical method was developed to determine 25 PFASs in hand wipe samples collected as a composite sample from both hands of 60 adults. Polyfluoroalkyl phosphate esters (PAPs) were the predominant PFASs in the hand wipe samples (medians between 0.21 and 0.54 ng per sample). Positive and significant correlations were observed between PAPs, perfluorooctanesulfonate (PFOS), and perfluorooctanoate (PFOA) in hand wipes. Low frequency of daily hand washing (≤8 times day-1) was associated with 30-50% higher concentrations of PFOS, PFOA, and 8:2diPAP in hand wipes. Further, significant correlations between paired hand wipes and house dust samples were observed for PFOS, PFOA, and 6:2diPAP. Also, a significant correlation between PFOS in hand wipes and EtFOSE in indoor air was found. This finding indicates either a common source of exposure or a transformation of EtFOSE to PFOS in the environment or on the hands. The contributions of direct and indirect exposure to perfluoroalkyl acids (PFAAs) showed that PFOA contributed the highest exposure to adults via hand-to-mouth and dermal contacts, followed by PFOS. The median of estimated daily intakes via hand-to-mouth and dermal contacts (for hands only) for PFOA were 0.83 and 0.50 pg·kg bw-1·day-1, respectively. This study gives a first indication that PFAS concentrations in hand wipes can be used as a proxy for the exposure to PFASs from indoor environments, but further studies are needed to confirm this.
Kerstin Winkens, Georgios Giovanoulis, Jani Koponen, Robin Vestergren, Urs Berger, Anne M. Karvonen, Juha Pekkanen, Hannu Kiviranta, and Ian T. Cousins
Elsevier BV
Katerina Kademoglou, Georgios Giovanoulis, Anna Palm-Cousins, Juan Antonio Padilla-Sanchez, Jörgen Magnér, Cynthia A. de Wit, and Christopher D. Collins
American Chemical Society (ACS)
Phthalate esters (PEs) are used as plasticizers in consumer products. Their low migration stability has resulted in the classification of PEs as major indoor contaminants. Because of PE’s ubiquity and adverse health effects on humans and especially children, non-phthalate alternative plasticizers have been introduced into the market. This is the first study of in vitro inhalation bioaccessibility of PEs (e.g., DMP, DEP, and DEHP) and alternative plasticizers (e.g., DEHT and DINCH) via indoor dust to assess inhalation as an alternative route of exposure. Two artificial lung fluids were used, mimicking two distinctively different pulmonary environments: (1) artificial lysosomal fluid (ALF, pH 4.5) representing the intracellular acidic lung fluid inhaled particle contact after phagocytosis by alveolar macrophages and (2) Gamble’s solution (pH 7.4), the extracellular healthy fluid for deep lung deposition of dust. DMP and DEP were highly bioaccessible (>75%), whereas highly hydrophobic compounds such as DEHP,...
Georgios Giovanoulis, Thuy Bui, Fuchao Xu, Eleni Papadopoulou, Juan A. Padilla-Sanchez, Adrian Covaci, Line S. Haug, Anna Palm Cousins, Jörgen Magnér, Ian T. Cousins,et al.
Elsevier BV
Andreia Alves, Georgios Giovanoulis, Ulrika Nilsson, Claudio Erratico, Luisa Lucattini, Line S. Haug, Griet Jacobs, Cynthia A. de Wit, Pim E. G. Leonards, Adrian Covaci,et al.
American Chemical Society (ACS)
Alternative plasticizers and flame retardants (FRs) have been introduced as replacements for banned or restricted chemicals, but much is still unknown about their metabolism and occurrence in humans. We identified the metabolites formed in vitro for four alternative plasticizers (acetyltributyl citrate (ATBC), bis(2-propylheptyl) phthalate (DPHP), bis(2-ethylhexyl) terephthalate (DEHTP), bis(2-ethylhexyl) adipate (DEHA)), and one FR (2,2-bis (chloromethyl)-propane-1,3-diyltetrakis(2-chloroethyl) bisphosphate (V6)). Further, these compounds and their metabolites were investigated by LC/ESI-Orbitrap-MS in urine and finger nails collected from a Norwegian cohort. Primary and secondary ATBC metabolites had detection frequencies (% DF) in finger nails ranging from 46 to 95%. V6 was identified for the first time in finger nails, suggesting that this matrix may also indicate past exposure to FRs as well as alternative plasticizers. Two isomeric forms of DEHTP primary metabolite were highly detected in urine (97% DF) and identified in finger nails, while no DPHP metabolites were detected in vivo. Primary and secondary DEHA metabolites were identified in both matrices, and the relative proportion of the secondary metabolites was higher in urine than in finger nails; the opposite was observed for the primary metabolites. As many of the metabolites present in in vitro extracts were further identified in vivo in urine and finger nail samples, this suggests that in vitro assays can reliably mimic the in vivo processes. Finger nails may be a useful noninvasive matrix for human biomonitoring of specific organic contaminants, but further validation is needed.
Ioannis Liagkouridis, Borislav Lazarov, Georgios Giovanoulis, and Ian T. Cousins
Elsevier BV
Kristin Larsson, Christian H Lindh, Bo AG Jönsson, Georgios Giovanoulis, Momina Bibi, Matteo Bottai, Anna Bergström, and Marika Berglund
Elsevier BV
Georgios Giovanoulis, Andreia Alves, Eleni Papadopoulou, Anna Palm Cousins, André Schütze, Holger M. Koch, Line S. Haug, Adrian Covaci, Jörgen Magnér, and Stefan Voorspoels
Elsevier BV
Fuchao Xu, Georgios Giovanoulis, Sofie van Waes, Juan Antonio Padilla-Sanchez, Eleni Papadopoulou, Jorgen Magnér, Line Småstuen Haug, Hugo Neels, and Adrian Covaci
American Chemical Society (ACS)
We compared the human exposure to organophosphate flame retardants (PFRs) via inhalation, dust ingestion, and dermal absorption using different sampling and assessment strategies. Air (indoor stationary air and personal ambient air), dust (floor dust and surface dust), and hand wipes were sampled from 61 participants and their houses. We found that stationary air contains higher levels of ΣPFRs (median = 163 ng/m(3), IQR = 161 ng/m(3)) than personal air (median = 44 ng/m(3), IQR = 55 ng/m(3)), suggesting that the stationary air sample could generate a larger bias for inhalation exposure assessment. Tris(chloropropyl) phosphate isomers (ΣTCPP) accounted for over 80% of ΣPFRs in both stationary and personal air. PFRs were frequently detected in both surface dust (ΣPFRs median = 33 100 ng/g, IQR = 62 300 ng/g) and floor dust (ΣPFRs median = 20 500 ng/g, IQR = 30 300 ng/g). Tris(2-butoxylethyl) phosphate (TBOEP) accounted for 40% and 60% of ΣPFRs in surface and floor dust, respectively, followed by ΣTCPP (30% and 20%, respectively). TBOEP (median = 46 ng, IQR = 69 ng) and ΣTCPP (median = 37 ng, IQR = 49 ng) were also frequently detected in hand wipe samples. For the first time, a comprehensive assessment of human exposure to PFRs via inhalation, dust ingestion, and dermal absorption was conducted with individual personal data rather than reference factors of the general population. Inhalation seems to be the major exposure pathway for ΣTCPP and tris(2-chloroethyl) phosphate (TCEP), while participants had higher exposure to TBOEP and triphenyl phosphate (TPHP) via dust ingestion. Estimated exposure to ΣPFRs was the highest with stationary air inhalation (median =34 ng·kg bw(-1)·day(-1), IQR = 38 ng·kg bw(-1)·day(-1)), followed by surface dust ingestion (median = 13 ng·kg bw(-1)·day(-1), IQR = 28 ng·kg bw(-1)·day(-1)), floor dust ingestion and personal air inhalation. The median dermal exposure on hand wipes was 0.32 ng·kg bw(-1)·day(-1) (IQR = 0.58 ng·kg bw(-1)·day(-1)) for ΣTCPP. The selection of sampling and assessment strategies could significantly affect the results of exposure assessment.
Thuy T. Bui, Georgios Giovanoulis, Anna Palm Cousins, Jörgen Magnér, Ian T. Cousins, and Cynthia A. de Wit