Essam Said Hanandeh

@zu.edu.jo

Faculty of Information Technology - Computer Science
Zarqa University



              

https://researchid.co/hanandeh

RESEARCH INTERESTS

Database,Information Retrieval,Data Mining

37

Scopus Publications

2110

Scholar Citations

15

Scholar h-index

19

Scholar i10-index

Scopus Publications

  • Modified Aquila Optimizer Feature Selection Approach and Support Vector Machine Classifier for Intrusion Detection System
    Laith Abualigah, Saba Hussein Ahmed, Mohammad H. Almomani, Raed Abu Zitar, Anas Ratib Alsoud, Belal Abuhaija, Essam Said Hanandeh, Heming Jia, Diaa Salama Abd Elminaam, and Mohamed Abd Elaziz

    Springer Science and Business Media LLC

  • Spider monkey optimizations: application review and results
    Laith Abualigah, Sahar M. Alshatti, Abiodun M. Ikotun, Raed Abu Zitar, Anas Ratib Alsoud, Nima Khodadadi, Absalom E. Ezugwu, Essam Said Hanandeh, Heming Jia, and Mohsen Zare

    Elsevier

  • Whale optimization algorithm: analysis and full survey
    Laith Abualigah, Roa’a Abualigah, Abiodun M. Ikotun, Raed Abu Zitar, Anas Ratib Alsoud, Nima Khodadadi, Absalom E. Ezugwu, Essam Said Hanandeh, and Heming Jia

    Elsevier

  • Teaching–learning-based optimization algorithm: analysis study and its application
    Laith Abualigah, Eman Abu-Dalhoum, Abiodun M. Ikotun, Raed Abu Zitar, Anas Ratib Alsoud, Nima Khodadadi, Absalom E. Ezugwu, Essam Said Hanandeh, and Heming Jia

    Elsevier

  • Aquila optimizer: review, results and applications
    Laith Abualigah, Batool Sbenaty, Abiodun M. Ikotun, Raed Abu Zitar, Anas Ratib Alsoud, Nima Khodadadi, Absalom E. Ezugwu, Essam Said Hanandeh, and Heming Jia

    Elsevier

  • Salp swarm algorithm: survey, analysis, and new applications
    Laith Abualigah, Worod Hawamdeh, Raed Abu Zitar, Shadi AlZu’bi, Ala Mughaid, Essam Said Hanandeh, Anas Ratib Alsoud, and El-Sayed M. El-kenawy

    Elsevier

  • A Survey of cuckoo search algorithm: optimizer and new applications
    Laith Abualigah, Ashraf Ababneh, Abiodun M. Ikotun, Raed Abu Zitar, Anas Ratib Alsoud, Nima Khodadadi, Absalom E. Ezugwu, Essam Said Hanandeh, and Heming Jia

    Elsevier

  • A review of krill herd algorithm: optimization and its applications
    Laith Abualigah, Mohammad Al-Zyod, Abiodun M. Ikotun, Mohammad Shehab, Mohammed Otair, Absalom E. Ezugwu, Essam Said Hanandeh, Ali Raza, and El-Sayed M. El-kenawy

    Elsevier

  • Arithmetic optimization algorithm: a review and analysis
    Laith Abualigah, Aya Abusaleem, Abiodun M. Ikotun, Raed Abu Zitar, Anas Ratib Alsoud, Nima Khodadadi, Absalom E. Ezugwu, Essam Said Hanandeh, and Heming Jia

    Elsevier

  • Marine predator’s algorithm: a survey of recent applications
    Laith Abualigah, Suhier Odah, Abiodun M. Ikotun, Anas Ratib Alsoud, Agostino Forestiero, Absalom E. Ezugwu, Essam Said Hanandeh, Heming Jia, and Mohsen Zare

    Elsevier

  • Revolutionizing sustainable supply chain management: A review of metaheuristics
    Laith Abualigah, Essam Said Hanandeh, Raed Abu Zitar, Cuong-Le Thanh, Samir Khatir, and Amir H. Gandomi

    Elsevier BV

  • Improved Reptile Search Algorithm by Salp Swarm Algorithm for Medical Image Segmentation
    Laith Abualigah, Mahmoud Habash, Essam Said Hanandeh, Ahmad MohdAziz Hussein, Mohammad Al Shinwan, Raed Abu Zitar, and Heming Jia

    Springer Science and Business Media LLC

  • A Novel Methodology for Human Kinematics Motion Detection Based on Smartphones Sensor Data Using Artificial Intelligence
    Ali Raza, Mohammad Rustom Al Nasar, Essam Said Hanandeh, Raed Abu Zitar, Ahmad Yacoub Nasereddin, and Laith Abualigah

    MDPI AG
    Kinematic motion detection aims to determine a person’s actions based on activity data. Human kinematic motion detection has many valuable applications in health care, such as health monitoring, preventing obesity, virtual reality, daily life monitoring, assisting workers during industry manufacturing, caring for the elderly. Computer vision-based activity recognition is challenging due to problems such as partial occlusion, background clutter, appearance, lighting, viewpoint, and changes in scale. Our research aims to detect human kinematic motions such as walking or running using smartphones’ sensor data within a high-performance framework. An existing dataset based on smartphones’ gyroscope and accelerometer sensor values is utilized for the experiments in our study. Sensor exploratory data analysis was conducted in order to identify valuable patterns and insights from sensor values. The six hyperparameters, tunned artificial indigence-based machine learning, and deep learning techniques were applied for comparison. Extensive experimentation showed that the ensemble learning-based novel ERD (ensemble random forest decision tree) method outperformed other state-of-the-art studies with high-performance accuracy scores. The proposed ERD method combines the random forest and decision tree models, which achieved a 99% classification accuracy score. The proposed method was successfully validated with the k-fold cross-validation approach.

  • Studying Risks of Hybrid Reengineering on Air-Transportation Systems Management 'A Case Study on Jordanian Civil Aviation Regulatory Commission (CARC)'
    Al Refai Mohammed N., Taani M.K. K., Ahmed Ali Otoom, Ghassan Samara, Hanandeh E. S, and Hayel Khafajeh

    IEEE
    This study examines decision-making in software re-engineering within businesses, focusing on the challenges and considerations involved. Financial constraints, time, and staff efforts are critical factors in these decisions. The study identifies difficulties faced by top-level management with legacy systems, existing systems, underused systems, and packaged software due to user resistance and customer dissatisfaction. The primary goal of the study is to assess the importance of software quality factors, especially from the users' perspective, in making re-engineering decisions. It uses the ISO 9126 Model to analyze quality elements in the case study software, aiming to provide guidance for deciding whether to proceed with re-engineering. The study explores functionality, reliability, usability, efficiency, maintainability, and portability as factors influencing re-engineering decisions, based on the ISO 9126 model. To understand user interactions and program performance, the study used unstructured participant observation in the case study software, highlighting the challenges faced by top management due to user resistance. These findings were further confirmed through face-to-face interviews with software users and department employees, offering insights into their perspectives on software quality elements. The results reveal that, despite some flaws, the system has valuable features and capabilities. Most employees express a desire to undergo re-engineering to enhance service quality, align with ISO 9126 standards, and leverage the expertise of competent staff for re-engineering activities.

  • Arabic Text Categorization Algorithm Using Vector Space Model
    Essam Hanandeh and Mohamed Shajahan

    Springer Nature Switzerland

  • Issues in Electronic Distance Learning
    Aref abu Awad, Essam Hanandeh, and Halah Nasseif

    Springer Nature Switzerland

  • Machine Learning and Network Traffic to Distinguish Between Malware and Benign Applications
    Laith Abualigah, Sayel Abualigah, Mothanna Almahmoud, Agostino Forestiero, Gagan Sachdeva, and Essam S. Hanandeh

    Springer Nature Switzerland

  • Extractive Text Summarization Using Syntactic Sub-graph Models
    Yazan Alaya AL-Khassawneh, Essam Said Hanandeh, and Sattam Almatarneh

    Springer Nature Singapore

  • Extractive Arabic Text Summarization-Graph-Based Approach
    Yazan Alaya AL-Khassawneh and Essam Said Hanandeh

    MDPI AG
    With the noteworthy expansion of textual data sources in recent years, easy, quick, and precise text processing has become a challenge for key qualifiers. Automatic text summarization is the process of squeezing text documents into shorter summaries to facilitate verification of their basic contents, which must be completed without losing vital information and features. The most difficult information retrieval task is text summarization, particularly for Arabic. In this research, we offer an automatic, general, and extractive Arabic single document summarizing approach with the goal of delivering a sufficiently informative summary. The proposed model is based on a textual graph to generate a coherent summary. Firstly, the original text is converted to a textual graph using a novel formulation that takes into account sentence relevance, coverage, and diversity to evaluate each sentence using a mix of statistical and semantic criteria. Next, a sub-graph is built to reduce the size of the original text. Finally, unwanted and less weighted phrases are removed from the summarized sentences to generate a final summary. We used Recall-Oriented Research to Evaluate Main Idea (RED) as an evaluative metric to review our proposed technique and compare it with the most advanced methods. Finally, a trial on the Essex Arabic Summary Corpus (EASC) using the ROUGE index showed promising results compared with the currently available methods.

  • Image Processing Identification for Sapodilla Using Convolution Neural Network (CNN) and Transfer Learning Techniques
    Ali Khazalah, Boppana Prasanthi, Dheniesh Thomas, Nishathinee Vello, Suhanya Jayaprakasam, Putra Sumari, Laith Abualigah, Absalom E. Ezugwu, Essam Said Hanandeh, and Nima Khodadadi

    Springer International Publishing

  • Classify Arabic Text using Vector Space Models
    Essam S. Hanandeh, Aref Abu Awwad, and Yazan Khassawneh

    IEEE
    The researchers of this study chose 242 Arabic abstract doucments. Computer science and information systems are mentioned in all of these abstracts. The researchers created an Arabic-specific autonomous information retrieval system, the system was written in the C# NET programming language and its compatible with IBM/PCs and other microcomputers. For this corpus, The researchers used an automatic indexing strategy. The system was created using the Vector Space Model (VSM). In this model, the researcher take all measurements and utilize the Cosine, Dice, Jaccard, and Inner Product Similarity measures. Using the Vector Space Model, the researchers compared the retrieval results. In Arabic documents, the researchers discovered that the retrieval result for cosine is better than the retrieval result for other measures.

  • An improved b-hill climbing optimization technique for solving the text documents clustering problem
    Laith Mohammad Abualigah, Essam Said Hanandeh, Ahamad Tajudin Khader, Mohammed Abdallh Otair, and Shishir Kumar Shandilya

    Bentham Science Publishers Ltd.
    Background: Considering the increasing volume of text document information on Internet pages, dealing with such a tremendous amount of knowledge becomes totally complex due to its large size. Text clustering is a common optimization problem used to manage a large amount of text information into a subset of comparable and coherent clusters. Aims: This paper presents a novel local clustering technique, namely, β-hill climbing, to solve the problem of the text document clustering through modeling the β-hill climbing technique for partitioning the similar documents into the same cluster. Methods: The β parameter is the primary innovation in β-hill climbing technique. It has been introduced in order to perform a balance between local and global search. Local search methods are successfully applied to solve the problem of the text document clustering such as; k-medoid and kmean techniques. Results: Experiments were conducted on eight benchmark standard text datasets with different characteristics taken from the Laboratory of Computational Intelligence (LABIC). The results proved that the proposed β-hill climbing achieved better results in comparison with the original hill climbing technique in solving the text clustering problem. Conclusion: The performance of the text clustering is useful by adding the β operator to the hill climbing.

  • Modified krill herd algorithm for global numerical optimization problems
    Laith Mohammad Abualigah, Ahamad Tajudin Khader, and Essam Said Hanandeh

    Springer International Publishing
    For the purpose of improving the search strategy of the krill herd algorithm (KHA) , an improved robust approach is proposed to address the function optimization problems, namely, modified krill herd algorithm (MKHA) . In MKHA method, the modification of krill herd algorithm focuses on genetic operators (GOs) and it occurs in the ordering of procedures of the basic krill herd algorithm, where the crossover and mutation operators are employed after the updating process of the krill individuals position, the krill herd (KH) motion calculations, is finished. This modification is conducted because the genetic operators insignificantly exploit to enhance the global exploration search in the basic krill herd algorithm so as to speed up convergence. Several versions of benchmark functions are applied to verify the proposed method (MKHA) and it is showed that, in most cases, the proposed algorithm (MKHA) obtained better results in comparison with the basic KHA and other comparative methods.

  • Hybrid clustering analysis using improved krill herd algorithm
    Laith Mohammad Abualigah, Ahamad Tajudin Khader, and Essam Said Hanandeh

    Springer Science and Business Media LLC
    In this paper, a novel text clustering method, improved krill herd algorithm with a hybrid function, called MMKHA, is proposed as an efficient clustering way to obtain promising and precise results in this domain. Krill herd is a new swarm-based optimization algorithm that imitates the behavior of a group of live krill. The potential of this algorithm is high because it performs better than other optimization methods; it balances the process of exploration and exploitation by complementing the strength of local nearby searching and global wide-range searching. Text clustering is the process of grouping significant amounts of text documents into coherent clusters in which documents in the same cluster are relevant. For the purpose of the experiments, six versions are thoroughly investigated to determine the best version for solving the text clustering. Eight benchmark text datasets are used for the evaluation process available at the Laboratory of Computational Intelligence (LABIC). Seven evaluation measures are utilized to validate the proposed algorithms, namely, ASDC, accuracy, precision, recall, F-measure, purity, and entropy. The proposed algorithms are compared with the other successful algorithms published in the literature. The results proved that the proposed improved krill herd algorithm with hybrid function achieved almost all the best results for all datasets in comparison with the other comparative algorithms.

  • A combination of objective functions and hybrid Krill herd algorithm for text document clustering analysis
    Laith Mohammad Abualigah, Ahamad Tajudin Khader, and Essam Said Hanandeh

    Elsevier BV
    Abstract Krill herd (KH) algorithm is a novel swarm-based optimization algorithm that imitates krill herding behavior during the searching for foods. It has been successfully used in solving many complex optimization problems. The potency of this algorithm is very high because of its superior performance compared with other optimization algorithms. Hence, the applicability of this algorithm for text document clustering is investigated in this work. Text document clustering refers to the method of clustering an enormous amount of text documents into coherent and dense clusters, where documents in the same cluster are similar. In this paper, a combination of objective functions and hybrid KH algorithm, called, MHKHA, is proposed to solve the text document clustering problem. In this version, the initial solutions of the KH algorithm are inherited from the k-mean clustering algorithm and the clustering decision is based on two combined objective functions. Nine text standard datasets collected from the Laboratory of Computational Intelligence are used to evaluate the performance of the proposed algorithms. Five evaluation measures are employed, namely, accuracy, precision, recall, F-measure, and convergence behavior. The proposed versions of the KH algorithm are compared with other well-known clustering algorithms and other thirteen published algorithms in the literature. The MHKHA obtained the best results for all evaluation measures and datasets used among all the clustering algorithms tested.

RECENT SCHOLAR PUBLICATIONS

  • Modified aquila optimizer feature selection approach and support vector machine classifier for intrusion detection system
    L Abualigah, SH Ahmed, MH Almomani, RA Zitar, AR Alsoud, B Abuhaija, ...
    Multimedia Tools and Applications, 1-27 2024

  • A Survey of cuckoo search algorithm: optimizer and new applications
    L Abualigah, A Ababneh, AM Ikotun, RA Zitar, AR Alsoud, N Khodadadi, ...
    Metaheuristic Optimization Algorithms, 45-57 2024

  • Spider monkey optimizations: application review and results
    L Abualigah, SM Alshatti, AM Ikotun, RA Zitar, AR Alsoud, N Khodadadi, ...
    Metaheuristic Optimization Algorithms, 117-131 2024

  • Marine predator’s algorithm: a survey of recent applications
    L Abualigah, S Odah, AM Ikotun, AR Alsoud, A Forestiero, AE Ezugwu, ...
    Metaheuristic Optimization Algorithms, 133-145 2024

  • Aquila optimizer: review, results and applications
    L Abualigah, B Sbenaty, AM Ikotun, RA Zitar, AR Alsoud, N Khodadadi, ...
    Metaheuristic Optimization Algorithms, 89-103 2024

  • Whale optimization algorithm: analysis and full survey
    L Abualigah, AM Ikotun, RA Zitar, AR Alsoud, N Khodadadi, AE Ezugwu, ...
    Metaheuristic Optimization Algorithms, 105-115 2024

  • A review of krill herd algorithm: optimization and its applications
    L Abualigah, M Al-Zyod, AM Ikotun, M Shehab, M Otair, AE Ezugwu, ...
    Metaheuristic Optimization Algorithms, 231-239 2024

  • Arithmetic optimization algorithm: a review and analysis
    L Abualigah, A Abusaleem, AM Ikotun, RA Zitar, AR Alsoud, N Khodadadi, ...
    Metaheuristic Optimization Algorithms, 73-87 2024

  • Salp swarm algorithm: survey, analysis, and new applications
    L Abualigah, W Hawamdeh, RA Zitar, S AlZu’bi, A Mughaid, ...
    Metaheuristic Optimization Algorithms, 241-258 2024

  • Teaching–learning-based optimization algorithm: analysis study and its application
    L Abualigah, E Abu-Dalhoum, AM Ikotun, RA Zitar, AR Alsoud, ...
    Metaheuristic Optimization Algorithms, 59-71 2024

  • Original Research Article An investigation to identify the factors that cause failure in English essay, precis, and composition papers in CSS exams
    K Gul, W Shahzad, A Raza, E Hanandeh, RA Zitar, K Aldiabat, R Shboul, ...
    Journal of Autonomous Intelligence 7 (5) 2024

  • Issues in Electronic Distance Learning
    A Awad, E Hanandeh, H Nasseif
    Artificial Intelligence, Internet of Things, and Society 5.0, 417-429 2023

  • Arabic Text Categorization Algorithm Using Vector Space Model
    E Hanandeh, M Shajahan
    Artificial Intelligence, Internet of Things, and Society 5.0, 41-50 2023

  • Revolutionizing sustainable supply chain management: A review of metaheuristics
    L Abualigah, ES Hanandeh, RA Zitar, CL Thanh, S Khatir, AH Gandomi
    Engineering Applications of Artificial Intelligence 126, 106839 2023

  • Improved reptile search algorithm by salp swarm algorithm for medical image segmentation
    L Abualigah, M Habash, ES Hanandeh, AMA Hussein, MA Shinwan, ...
    Journal of bionic engineering 20 (4), 1766-1790 2023

  • A novel methodology for human kinematics motion detection based on smartphones sensor data using artificial intelligence
    A Raza, MR Al Nasar, ES Hanandeh, RA Zitar, AY Nasereddin, ...
    Technologies 11 (2), 55 2023

  • Check for Extractive Text Summarization Using Syntactic Sub-graph Models Yazan Alaya AL-Khassawneh (), Essam Said Hanandeh, and Sattam Almatarneh 1 Data Science and
    YA AL-Khassawneh, ES Hanandeh
    Data Science and Emerging Technologies: Proceedings of DaSET 2022 165, 3 2023

  • Extractive Arabic text summarization-graph-based approach
    YA AL-Khassawneh, ES Hanandeh
    Electronics 12 (2), 437 2023

  • Extractive Text Summarization Using Syntactic Sub-graph Models
    YA Al-Khassawneh, ES Hanandeh, S Almatarneh
    The International Conference on Data Science and Emerging Technologies, 3-17 2022

  • Machine learning and network traffic to distinguish between malware and benign applications
    L Abualigah, S Abualigah, M Almahmoud, A Forestiero, G Sachdeva, ...
    International Conference on Pervasive Knowledge and Collective Intelligence 2022

MOST CITED SCHOLAR PUBLICATIONS

  • A new feature selection method to improve the document clustering using particle swarm optimization algorithm
    LM Abualigah, AT Khader, ES Hanandeh
    Journal of Computational Science 25, 456-466 2018
    Citations: 502

  • Hybrid clustering analysis using improved krill herd algorithm
    LM Abualigah, AT Khader, ES Hanandeh
    Applied Intelligence 48 (11), 4047-4071 2018
    Citations: 353

  • A combination of objective functions and hybrid krill herd algorithm for text document clustering analysis
    LM Abualigah, AT Khader, ES Hanandeh
    Engineering Applications of Artificial Intelligence 73, 111-125 2018
    Citations: 262

  • Applying genetic algorithms to information retrieval using vector space model
    LMQ Abualigah, ES Hanandeh
    International Journal of Computer Science, Engineering and Applications 2015
    Citations: 248

  • A novel hybridization strategy for krill herd algorithm applied to clustering techniques
    AG Laith Abualigaha, Ahamad Khadera, Essam Hanandehb
    Applied Soft Computing 60 (Issue 1), 423-435 2017
    Citations: 240

  • A hybrid strategy for krill herd algorithm with harmony search algorithm to improve the data clustering𝟏
    LM Abualigah, AT Khader, ES Hanandeh
    Intelligent Decision Technologies 12 (1), 3-14 2018
    Citations: 60

  • Revolutionizing sustainable supply chain management: A review of metaheuristics
    L Abualigah, ES Hanandeh, RA Zitar, CL Thanh, S Khatir, AH Gandomi
    Engineering Applications of Artificial Intelligence 126, 106839 2023
    Citations: 57

  • A novel weighting scheme applied to improve the text document clustering techniques
    LM Abualigah, AT Khader, ES Hanandeh
    Innovative Computing, Optimization and Its Applications: Modelling and 2018
    Citations: 50

  • Improved reptile search algorithm by salp swarm algorithm for medical image segmentation
    L Abualigah, M Habash, ES Hanandeh, AMA Hussein, MA Shinwan, ...
    Journal of bionic engineering 20 (4), 1766-1790 2023
    Citations: 48

  • Feature selection with β-hill climbing search for text clustering application
    LM Abualigah, AT Khader, MA Al-Betar, ZAA Alyasseri, OA Alomari, ...
    2017 Palestinian International Conference on Information and Communication 2017
    Citations: 47

  • Modified krill herd algorithm for global numerical optimization problems
    LM Abualigah, AT Khader, ES Hanandeh
    Advances in nature-inspired computing and applications, 205-221 2019
    Citations: 38

  • A new hybridization strategy for krill herd algorithm and harmony search algorithm applied to improve the data clustering
    LM Abualigah, AT Khader, MA AlBetar, ES Hanandeh
    First EAI international conference on computer science and engineering, 54-63 2017
    Citations: 34

  • Unsupervised text feature selection technique based on particle swarm optimization algorithm for improving the text clustering
    LM Abualigah, AT Khader, MA AlBetar, ES Hanandeh
    First EAI International Conference on Computer Science and Engineering, 169-178 2017
    Citations: 33

  • A novel methodology for human kinematics motion detection based on smartphones sensor data using artificial intelligence
    A Raza, MR Al Nasar, ES Hanandeh, RA Zitar, AY Nasereddin, ...
    Technologies 11 (2), 55 2023
    Citations: 24

  • Image processing identification for sapodilla using convolution neural network (CNN) and transfer learning techniques
    A Khazalah, B Prasanthi, D Thomas, N Vello, S Jayaprakasam, P Sumari, ...
    classification applications with deep learning and machine learning 2022
    Citations: 16

  • Hybrid harmony search algorithm to solve the feature selection for data mining applications
    L Mohammad Abualigah, M Al‐diabat, M Al Shinwan, K Dhou, B Alsalibi, ...
    Recent advances in hybrid metaheuristics for data clustering, 19-37 2020
    Citations: 15

  • Extractive Arabic text summarization-graph-based approach
    YA AL-Khassawneh, ES Hanandeh
    Electronics 12 (2), 437 2023
    Citations: 14

  • An improved b-hill climbing optimization technique for solving the text documents clustering problem
    LM Abualigah, ES Hanandeh, AT Khader, MA Otair, SK Shandilya
    Current medical imaging 16 (4), 296-306 2020
    Citations: 14

  • Building an automatic thesaurus to enhance information retrieval
    E Hanandeh
    International Journal of Computer Science Issues (IJCSI) 10 (1), 676 2013
    Citations: 10

  • Modified aquila optimizer feature selection approach and support vector machine classifier for intrusion detection system
    L Abualigah, SH Ahmed, MH Almomani, RA Zitar, AR Alsoud, B Abuhaija, ...
    Multimedia Tools and Applications, 1-27 2024
    Citations: 7