@ajku.edu.pk
Assistant Professor of Mathematics, Department of Mathematics, Faculty of Science
The University of Azad Jammu and Kashmir
Muhammad Faisal is a Faculty Member in the Department of Mathematics, Faculty of Science, Azad Jammu & Kashmir University, Muzaffarabad, Pakistan. He received his PhD, MPhil and MSc degrees from Department of Mathematics UAJK in 2021, 2013 and 2010, respectively. His research is in the field of computational fluid dynamics, thermal engineering, engineering mathematics and physics, nanocomposites, computational methods, nanofluids, hybrid nanofluids, etc.
PhD in Mathematics
MPhil in Mathematics
MSc in Mathematics
Specialization: Applied Mathematics (Fluid Mechanics and Numerical Methods)
Computational Mathematics, Fluid Flow and Transfer Processes, Materials Science, General Physics and Astronomy
To gain an understanding of the heat transfer performance Applications of extending surfaces in nanotechnology Stability analysis of the solution Numerical Inspections of Newtonian and non-Newtonian nanofluid flows
1. Inspection of heat transport in hybrid nanofluids. 2. Discussion on thermo-physical properties of various nanoparticles. 3. Thermal conductivity of heterogeneous two-component systems. 4. Unsteady flows towards stretching devices. 5. Numerical Simulation via Keller-Box method.
1. To study the aspects of random motion and thermo-migration of nanoparticles. 2. Discussion on the shapes of nanoparticles. 3. Numerical Simulation via Keller-Box method. 4. Unsteady flows towards stretching devices.
Scopus Publications
Muhammad Faisal, Muhammad Zubair Akbar Qureshi, and Nehad Ali Shah
Wiley
AbstractThis study applies advanced AI techniques, including machine learning algorithms, to explore the numerically unsteady laminar flow of viscous and incompressible fluids in coaxially swirled porous disks, with applications in engineering sciences. Our focus encompasses the effects of magnetic hybrid nanomaterials and the dynamic behaviors associated with expanding/contracting and injection/suction. Utilizing single‐phase simulations, we address nonlinear coupled ordinary differential equations set against appropriate boundary conditions. Key parameters of our study include permeability and relaxation, as well as the influence of chemical reactions and mixed convection on fluid behaviors. The thermophysical properties of Al2O3/Cu nanoparticles have been by varying their morphological aspects. For the hybrid nanofluids flow, the aggregation of nanoparticle volume fraction has been designed critically in conjunction with an energy and mass transfer equation. Because dimensionless ordinary differential equations are employed, the obtained expression is transmuted using the obliging transformation technique. The desired nonlinear system of ODEs is implemented using an accurate numerical method. Our findings reveal significant impacts of chemical reaction parameters on the Sherwood number and a marked increase in the skin friction coefficient, Nusselt number, and Sherwood number as nanoparticle volume fraction rises from 2% to 7%.
Mubashir Qayyum, Muhammad Faisal, Shahram Rezapour, and Mustafa Inc
World Scientific Pub Co Pte Ltd
The objective of this research is to recover new solutions in the lifting and drainage cases of thin film flows involving non-Newtonian fluid models namely Pseudo-Plastic (PP) and Oldroyd 6-Constant (O6C). Both of the considered fluids exhibit numerous uses in industry when coupled with thin film phenomena. Some of the industrial applications include decorative and optical coatings, prevention of metallic corrosion and lithography of various diodes, sensors and detectors. For solution purpose, a modified version of Optimal Homotopy Asymptotic Method (OHAM) is proposed in which Daftardar–Jafari polynomials will replace the classical OHAM polynomials in nonlinear problems and provide better results in terms of accuracy. The paper includes a comprehensive application of modified algorithm in the case of thin film phenomena. To validate the obtained series solutions, the paper employs a rigorous assessment of convergence and validity by computing the residual errors in each scenario. For showing the effectiveness of modified algorithm, numerical comparison of classical and modified OHAMs is also presented in this study. Furthermore, the study conducts an in-depth graphical analysis to assess the impact of fluid parameters on velocity profiles both in lifting and drainage scenarios. The results of this investigation demonstrate that the proposed modification of OHAM ensures better accuracy of solutions than the classical OHAM. Consequently, this method can be effectively utilized for tackling more advanced situations.
Rong Fan, Abdul Rauf, Manal Elzain Mohamed Abdalla, Arif Nazir, Muhammad Faisal, and Adnan Aslam
Elsevier BV
M. Ahmad, Basharat Bashir, Taseer Muhammad, M. Taj, and Muhammad Faisal
World Scientific Pub Co Pte Ltd
In recent times, the interaction of nanoparticles has significantly enhanced the thermal association of heat transport. This phenomenon plays a crucial role in hydraulic systems, particularly in the context of lubrication and its associated consequences on mass and heat transport. Current studies have focused on investigating the thermal effects of a third-order nanofluid on a lubricated stretched surface near an analytical stagnation point. The lubrication process involves the use of a thin, adjustable coating of lubricant fluid. To analyze this complex system, we employ the Buongiorno model and explore thermophoresis and the Brownian motion phenomenon. For deriving analytical results of updated boundary layer ordinary differential equations, we rely on the dependable and effective hybrid homotopy analysis method (HHAM). To exhibit the effectiveness of our study, we provide a numerical comparison. Based on theoretical flow assumptions, we establish a range of flow parameters. In the presence of lubrication, we physically examine how these parameters affect temperatures, velocities, concentration, and other relevant quantities of thermal interest. These new findings have practical applications in polymer production, heat transmission, and hydraulic systems.
Muhammad Faisal, Farah Javed, K. Loganathan, Reema Jain, and Rifaqat Ali
Springer Science and Business Media LLC
M. Zubair Akbar Qureshi, M. Faisal, Kaleem Razzaq Malik, and Nehad Ali Shah
World Scientific Pub Co Pte Ltd
The growing popularity of artificial intelligence approaches has led to their application in a wide range of engineering fields. The most widely used artificial intelligence tool, artificial neural networks, can be used to predict data with high accuracy. An artificial neural network approach is being used to predict effective and accurate thermal conductivity and viscosity models for hybrid nanofluid systems. Here, new types of correlations relating to the thermophysical properties of Fly Ash–Cu nanoparticles with diameter sized 15.2[Formula: see text]nm and which are temperature-dependent are developed. The highest thermal conductivity and viscosity values were obtained for hybrid nanofluids with a mixture ratio of 20:80, with maximum amplification exceeding 83.2% and 65%, respectively, over the base fluid. The Fly Ash–Cu/water hybrid nanofluid’s viscosity and thermal conductivity are evaluated for a concentration range of 0–4%. The evaluation of the Fly Ash–Cu/water hybrid nanofluids system at concentrations ranging from 0 to 4% most likely entails a scientific or engineering study aimed at understanding the behavior and properties of this nanofluid mixture. Nanoparticles can agglomerate or settle in the base fluid over time, compromising the stability of the nanofluids. Researchers may be interested in determining how varied quantities of Fly Ash and Cu nanoparticles affect the nanofluid’s stability and sedimentation behavior. The heat transfer potential is examined within the optimistic range of temperatures of 30–80∘C. Many fruitful results for turbulence and solar energy have been drawn. The Mouromtseff number achieved an optimal value for all concentration levels. The heat transfers of turbulent flow and thermal conductivity of hybrid nanofluids increase with the augmented values of concentrations and temperature. Researchers found an increase in thermal conductivity of hybrid nanofluids at 0–4% concentrations, potentially impacting heat transfer applications. The conclusion explores the potential integration of the developed correlations and neural network model into practical engineering or industrial applications involving solar energy and turbulence appliances. In this work, we extend the work of Kanti et al. [Sol. Energy Mater. Sol. Cells 234 (2022) 111423] which is on the properties of water-based fly ash-copper hybrid nanofluid for solar energy applications.
Muhammad Faisal, Kanayo Kenneth Asogwa, F. Mabood, and I. A. Badruddin
World Scientific Pub Co Pte Ltd
In this paper, squeezing transport of radiative water conveying aluminum alloys (i.e., AA7072 and AA7075) mobilized by entropy generation and dissipative energy is analyzed. Problem is formulated in a rotating frame with the consideration of magnetohydrodynamics and Joule heating aspects. Maxwell model for nanofluid has been used to incorporate the thermophysical properties of nanoelements. Formulated governing expressions have been transformed into system of ODEs by introducing similarity variables. The transformed system of ODEs is then numerically solved by Runge–Kutta–Fehlberg (RKF) method based on shooting background. The physical quantities (i.e., skin-friction coefficient, Nusselt and Bejan numbers) of scientific interest are formulated and illustrated via various plots. Graphical representations of squeezing function, temperature profile and velocity profile have been made to examine the effects of involved parameters. Streamlines and isotherms patterns have been formed and discussed. To authenticate the validity of model, skin-friction values have been compared with published literature for limited version of the model. Entropy and temperature of the system are improved with the involvement of aluminum alloys in water. Symmetrical behavior of streamlines is observed for positive approach of squeezing parameter.
Muhammad Faisal, F. Mabood, I.A. Badruddin, Muhammad Aiyaz, and Faisal Mehmood Butt
Emerald
PurposeNonlinear mixed-convective entropy optimized the flow of hyperbolic-tangent nanofluid (HTN) with magnetohydrodynamics (MHD) process is considered over a vertical slendering surface. The impression of activation energy is incorporated in the modeling with the significance of nonlinear radiation, dissipative-function, heat generation/consumption connection and Joule heating. Research in this area has practical applications in the design of efficient heat exchangers, thermal management systems or nanomaterial-based devices.Design/methodology/approachSuitable set of variables is introduced to transform the PDEs (Partial differential equations) system into required ODEs (Ordinary differential equations) system. The transformed ODEs system is then solved numerically via finite difference method. Graphical artworks are made to predict the control of applicable transport parameters on surface entropy, Bejan number, Sherwood number, skin-friction, Nusselt number, temperature, velocity and concentration fields.FindingsIt is noticed from present numerical examination that Bejan number aggravates for improved estimations of concentration-difference parameter a_2, Eckert number E_c, thermal ratio parameter ?_w and radiation parameter R_d, whereas surface entropy condenses for flow performance index n, temperature-difference parameter a_1, thermodiffusion parameter N_t and mixed convection parameter ?. Sherwood number is enriched with the amplification of pedesis-motion parameter N_b, while opposite development is perceived for thermodiffusion parameter. Lastly, outcomes are matched with formerly published data to authenticate the present numerical investigation.Originality/valueTo the best of the authors' knowledge, no investigation has been reported yet that explains the entropic behavior with activation energy in the flowing of hyperbolic-tangent mixed-convective nanomaterial due to a vertical slendering surface.
Muhammad Faisal, Iftikhar Ahmad, and Muhammad Awais Awan
Wiley
AbstractEntropy generation with activation energy has garnered worldwide attention from researchers due to its extensive applications in thermodynamic design, chemical engineering, and optimization processes. One of the primary reasons for focusing on entropy is the global energy crisis, driven by massive consumption against limited resources. This study elucidates the double diffusion process in the dynamics of a viscous fluid over a stretching cylinder, incorporating considerations of entropy generation and activation energy. The non‐Fourier heat flux model is employed to describe the thermodynamics of the thermal system, while non‐Fick's law is used to elucidate the mass diffusion process. The unsteady phases of axisymmetric flow of the viscous fluid are thoroughly discussed. Transport equations in cylindrical configuration are transformed into ordinary differential equations, and an efficient mathematical method (i.e., homotopy analysis method) is applied to solve the transformed system. The graphical examination reveals the impact of flow parameters on velocity configuration, entropy configuration, temperature configurations, and concentration configurations. Additionally, a comparative benchmark is established with the results from previously published work for authentication and validation purposes. It is noted that concentration and temperature configurations are directly related to the unsteady stretching parameter. Entropy generation exhibits an inverse relationship with the unsteady stretching parameter when close to the stretching cylinder, whereas it shows a direct relationship when the fluid is flowing away from the surface.
Muhammad Faisal, Iftikhar Ahmad, and Abdur Rashid
Emerald
PurposeThe present study aims to encompass the bidirectional magnetized flowing of a hybrid-nanofluid over an unsteady stretching device with the inclusion of thermal radiation and entropy generation. Brick-shaped nanoparticles (zinc-oxide and ceria) are suspended in water, serving as the base-fluid to observe the performance of the hybrid mixture. The Maxwell thermal conductivity relation is employed to link the thermophysical attributes of the hybrid mixture with the host liquid. Additionally, a heat source/sink term is incorporated in the energy balance to enhance the impact of the investigation. Both prescribed-surface-temperature (PST) and prescribed-heat-flux (PHF) conditions are applied to inspect the thermal performance of the hybrid nanofluid.Design/methodology/approachThe transport equations in Cartesian configuration are transformed into ordinary differential equations (ODEs), and an efficient method, namely the Keller-Box method (KBM), is utilized to solve the transformed system. Postprocessing is conducted to visually represent the velocity profile, thermal distribution, skin-friction coefficients, Bejan number, Nusselt number and entropy generation function against the variations of the involved parameters.FindingsIt is observed that more entropy is generated due to the increases in temperature difference and radiation parameters. The Bejan number initially declines but then improves with higher estimations of unsteadiness and Hartmann number. Overall, the thermal performance of the system is developed for the PST scenario than the PHF scenario for different estimations of the involved constraints.Originality/valueTo the best of the authors' knowledge, no investigation has been reported yet that explains the bidirectional flow of a CeO2-ZnO/water hybrid nanofluid with the combined effects of prescribed thermal aspects (PST and PHF) and entropy generation.
Muhammad Faisal, Iftikhar Ahmad, Qazi Zan-Ul-Abadin, Irfan Anjum Badruddin, and Mohamed Hussien
Emerald
Purpose This study aims to explore entropy evaluation in the bi-directional flow of Casson hybrid nanofluids within a stagnated domain, a topic of significant importance for optimizing thermal systems. The aim is to investigate the behavior of unsteady, magnetized and laminar flow using a parametric model based on the thermo-physical properties of alumina and copper nanoparticles. Design/methodology/approach The research uses boundary layer approximations and the Keller-box method to solve the derived ordinary differential equations, ensuring numerical accuracy through convergence and stability analysis. A comparison benchmark has been used to authenticate the accuracy of the numerical outcomes. Findings Results indicate that increasing the Casson fluid parameter (ranging from 0.1 to 1.0) reduces velocity, the Bejan number decreases with higher bidirectional flow parameter (ranging from 0.1 to 0.9) and the Nusselt number increases with higher nanoparticle concentrations (ranging from 1% to 4%). Research limitations/implications This study has limitations, including the assumption of laminar flow and the neglect of possible turbulent effects, which could be significant in practical applications. Practical implications The findings offer insights for optimizing thermal management systems, particularly in industries where precise control of heat transfer is crucial. The Keller-box simulation method proves to be effective in accurately predicting the behavior of such complex systems, and the entropy evaluation aids in assessing thermodynamic irreversibilities, which can enhance the efficiency of engineering designs. Originality/value These findings provide valuable insights into the thermal management of hybrid nanofluid systems, marking a novel contribution to the field.
Manzoor Ahmad, Muhammad Faisal, Quratulain Andleeb, Irfan Anjum Badruddin, Abdul Hamid Ganie, Mohamed Hussien, and Iftikhar Ahmad
Informa UK Limited
Muhammad Faisal, Farah Javed, Irfan Anjum Badruddin, Abdul Hamid Ganie, and Mohamed Hussien
Informa UK Limited
Muhammad Faisal, Qazi Zan-Ul-Abadin, Irfan Anjum Badruddin, Abdul Hamid Ganie, Iftikhar Ahmad, and Mohamed Hussien
Informa UK Limited
Qazi Zan-Ul-Abadin, Iftikhar Ahmad, Muhammad Bilal Riaz, and Muhammad Faisal
Informa UK Limited
Muhammad Faisal, Muhammad Bilal Riaz, Iftikhar Ahmad, and Syed Basit Ali Kazmi
Informa UK Limited
Muhammad Faisal, F. Mabood, K. K. Asogwa, and I. A. Badruddin
World Scientific Pub Co Pte Ltd
Convective heat and mass transport of radiative Williamson hybrid [Formula: see text] nanofluid (NF) by a Riga surface with the novel features of Cattaneo–Christov double-diffusion has been investigated. Thermal contributions of internal heat mechanism and Arrhenius energy in Darcy–Forchheimer medium have also been incorporated in the modeling. Mathematical modeling has been completed by using suitable mathematical expressions for thermophysical features of hybrid nanofluid (HNF). Transport partial differential equations (PDEs) have been transformed into ordinary differential equations (ODEs) by means of similarity variables. Numerical approximation of the transformed system has been obtained by using shooting-based Runge–Kutta–Fehlberg approach. Results have been presented through various graphs and discussed physically in detail. Solution is validated for limited cases. Concentration of the hybrid mixture is reduced for progressive concentration-relaxation parameter. Temperature is alleviated for developing thermal-relaxation parameter. Nusselt number is observed to be higher for Williamson HNF than simple ordinary NF.
Muhammad Faisal, F. Mabood, Kanayo Kenneth Asogwa, and I.A. Badruddin
Elsevier BV
S. Eswaramoorthi, K. Loganathan, Muhammad Faisal, Thongchai Botmart, and Nehad Ali Shah
Elsevier BV
Muhammad Faisal, Kanayo Kenneth Asogwa, Fazle Mabood, and Irfan Anjum Badruddin
Informa UK Limited
G. Dharmaiah, B. Shankar Goud, Nehad Ali Shah, and Muhammad Faisal
Informa UK Limited
M Zubair Akbar Qureshi, M Faisal, Qadeer Raza, Bagh Ali, Thongchai Botmart, and Nehad Ali Shah
American Institute of Mathematical Sciences (AIMS)
<abstract> <p>The objective of this study is to explore the heat transfer properties and flow features of an MHD hybrid nanofluid due to the dispersion of polymer/CNT matrix nanocomposite material through orthogonal permeable disks with the impact of morphological nanolayer. Matrix nanocomposites (MNC) are high-performance materials with unique properties and design opportunities. These MNC materials are beneficial in a variety of applications, spanning from packaging to biomedical applications, due to their exceptional thermophysical properties. The present innovative study is the dispersion of polymeric/ceramic matrix nanocomposite material on magnetized hybrid nanofluids flow through the orthogonal porous coaxial disks is deliberated. Further, we also examined the numerically prominence of the permeability ($ {\\mathrm{A}}_{\\mathrm{*}} $) function consisting of the Permeable Reynold number associated with the expansion/contraction ratio. The morphological significant effects of these nanomaterials on flow and heat transfer characteristics are explored. The mathematical structure, as well as empirical relations for nanocomposite materials, are formulated as partial differential equations, which are then translated into ordinary differential expressions using appropriate variables. The Runge–Kutta and shooting methods are utilized to find the accurate numerical solution. Variations in skin friction coefficient and Nusselt number at the lower and upper walls of disks, as well as heat transfer rate measurements, are computed using important engineering physical factors. A comparison table and graph of effective nanolayer thermal conductivity (ENTC) and non-effective nanolayer thermal conductivity are presented. It is observed that the increment in nanolayer thickness (0.4−1.6), enhanced the ENTC and thermal phenomena. By the enhancement in hybrid nanoparticles volume fraction (2% to 6%), significant enhancement in Nusselt number is noticed. This novel work may be beneficial for nanotechnology and relevant nanocomponents.</p> </abstract>
Muhammad Faisal, Iftikhar Ahmad, and Tariq Javed
Informa UK Limited
Investigation of expanding sheet flow in the existence of tiny particles is an interesting field of research and this type of mathematical model is usually expressed in the form of partial differen...
Muhammad Faisal, Kanayo Kenneth Asogwa, Nazek Alessa, and Karuppusamy Loganathan
MDPI AG
The collective effect of thermal and mass convection along with the significance of thermal radiation, heat source/sink, and magneto-nanofluid are considered. A bi-directional stretching device is used to generate the symmetry of the flowing structure. Nonlinear behavior of thermal radiation is considered here. The magnetic field is considered non-uniform and vertically upward. Significances of pedesis motion and Ludwig–Soret are also revealed in an innovative way with heat source/sink effects. The concept of symmetry is used to transmute the transport equations from PDE type to nonlinear ODE type. We solved the transformed setup numerically by adopting Keller-box method criteria with the targeted accuracy rate. Graphical interpretations are explored with code verification. It is important to conclude that friction coefficients decline for incremental values of stretching parameter (0.1≤α≤0.9), magnetic field (0.3≤M≤0.9), and unsteady parameter (0.2≤Λ≤0.9) along with the bidirectional velocity components, and the rate of heat transmission rises with temperature ratio (1.3≤Γ≤1.7) and temperature Biot number (0.3≤BiT≤0.9) amplification. Moreso, the rate of mass transfer is enhanced with growing values of pedesis motion (0.2≤Nb≤0.6), unsteady parameter and concentration Biot number (0.3≤BiC≤0.9) with opposite effect when the Ludwig–Soret parameter (0.3≤Nt≤0.6) is boosted.
M. Zubair Akbar Qureshi, Qadeer Raza, Aroosa Ramzan, M. Faisal, Bagh Ali, Nehad Ali Shah, and Wajaree Weera
MDPI AG
The current work investigated the mass and heat transfer of the MHD hybrid nanofluid flow subject to the impact of activation energy and cluster interfacial nanolayer. The heat transport processes related to the interfacial nanolayer between nanoparticles and base fluids enhanced the base fluid’s thermal conductivity. The tiny particles of Fe3O4 and PPy were considered due to the extraordinary thermal conductivity which is of remarkable significance in nanotechnology, electronic devices, and modern shaped heat exchangers. Using the similarity approach, the governing higher-order nonlinear coupled partial differential equation was reduced to a system of ordinary differential equations (ODEs). Fe3O4–PPy hybrid nanoparticles have a considerable influence on thermal performance, and when compared to non-interfacial nanolayer thermal conductivity, the interfacial nanolayer thermal conductivity model produced substantial findings. The increase in nanolayer thickness from level 1 to level 5 had a significant influence on thermal performance improvement. Further, the heat and mass transfer rate was enhanced with higher input values of interfacial nanolayer thickness.