@nims.go.jp
Post-Doctoral Researcher
National Institute for Materials Science (NIMS)
Signal Processing in Biological Systems, Wireless Communication
Scopus Publications
Scholar Citations
Scholar h-index
Scholar i10-index
Pushpendra Singh, Komal Saxena, Parama Dey, Pathik Sahoo, Kanad Ray, and Anirban Bandyopadhyay
Springer Nature Singapore
Komal Saxena, Pushpendra Singh, Parama Dey, Marielle Aulikki Wälti, Pathik Sahoo, Subrata Ghosh, Soami Daya Krishnanda, Roland Riek, and Anirban Bandyopadhyay
Springer Nature Singapore
Sudeshna Pramanik, Pushpendra Singh, Pathik Sahoo, Kanad Ray, and Anirban Bandyopadhyay
Springer Nature Singapore
Komal Saxena, Pushpendra Singh, Satyajit Sahu, Subrata Ghosh, Pathik Sahoo, Soami Daya Krishnananda, and Anirban Bandyopadhyay
Springer Nature Singapore
Pathik Sahoo, Pushpendra Singh, Jhimli Manna, Ravindra P. Singh, Jonathan P. Hill, Tomonobu Nakayama, Subrata Ghosh, and Anirban Bandyopadhyay
MDPI AG
Photons that acquire orbital angular momentum move in a helical path and are observed as a light ring. During helical motion, if a force is applied perpendicular to the direction of motion, an additional radial angular momentum is introduced, and alternate dark spots appear on the light ring. Here, a third, centrifugal angular momentum has been added by twisting the helical path further according to the three-step hierarchical assembly of helical organic nanowires. Attaining a third angular momentum is the theoretical limit for a photon. The additional angular momentum converts the dimensionless photon to a hollow spherical photon condensate with interactive dark regions. A stream of these photon condensates can interfere like a wave or disintegrate like matter, similar to the behavior of electrons.
P. Singh, M. A. Jalil, P. Yupapin, J. Ali, M. A. Palomino, M. Toledo-Solano, K. Misaghian, J. Faubert, K. Ray, A. Bandyopadhyay,et al.
MDPI AG
This manuscript explores the topological and optical properties of a Passeriformes bird feather. Inside the feather, the layers of keratin and melanin are responsible for light reflection, transmission, and absorption; notably, the miniature composition of melanosome barbules plays a crucial role in its reflective properties. We adopted a multilayer interference model to investigate light propagation throughout the Passeriformes plume. As a result, we obtained all necessary simulated results, such as resonance band, efficiency, and electromagnetic radiation patterns of the Passeriformes plume, and they were verified with the experimental results reported in the literature study regarding light reflectivity through its internal geometry. Interestingly, we discovered that the interior structure of the Passeriformes plume functions similarly to a UV reflector antenna.
Komal Saxena, Pushpendra Singh, Jhimli Sarkar, Pathik Sahoo, Subrata Ghosh, Soami Daya Krishnananda, and Anirban Bandyopadhyay
AIP Publishing
When a perturbed periodic oscillation dephases, the system edits it to retrieve the original clock. The inherent clock born during retrieval is the time crystal. Time crystals have been explored for five decades, and only one inherent clock was detected in biological and artificial systems. Only one type of atom is used in those time crystals, but two or more atom types would lead to multi-functional and programmable time crystals. No such concept was ever conceived. Here, we demonstrate a multi-clock time crystal or a polyatomic time crystal in the brain neuron-extracted microtubule nanowire using dielectric resonance and quantum optics experiments. Earlier, one used to artificially reset the phase of an inherent clock to find a time crystal. Instead, we map how a biomaterial spontaneously generates distinct new clocks at many time domains at a time. We observe multiple time-symmetry-breaking events at a time. Moreover, unlike conventional time crystal research, we searched for polyatomic time crystals at least 103 orders lower than the excitation frequency region. Conventional time crystals could be rejected, arguing that inherent clocks born after the breaking of time symmetry are harmonics of the external input, and such an argument will not hold for us. Moreover, quantum experiments revealed a method to synthesize and fuse distinct clocks in one hologram as a polyatomic time crystal and project it like an antenna meters away. The discovery of material-like holographic engineering of polyatomic time crystals would make them useful.
Subrata Ghosh, Pushpendra Singh, Jhimli Manna, Komal Saxena, Pathik Sahoo, Soami Daya Krishnanda, Kanad Ray, Jonathan P. Hill, and Anirban Bandyopadhyay
Informa UK Limited
ABSTRACT In 1907, Lapicque proposed that an electric field passes through the neuronal membrane and transmits a signal. Subsequently, a “snake curve” or spike was used to depict the means by which a linear flat current undergoes a sudden Gaussian or Laplacian peak. This concept has been the accepted scenario for more than 115 years even appearing in textbooks on the subject. It was not noted that the membrane spike should have a cylindrical shape. A nerve spike having a dot shape on membrane surface cannot propagate through a cylindrical surface since it would dissipate instantaneously. A nerve spike should have the appearance of a ring, encompassing the diameter of a cylindrical axon or dendron. However, this subtle change has remarkable implications. Maintaining a circular form of an electric field is not easy, especially at the surface of an organic object. Here, we suggest that neuroscience could redefine itself if we accept that a nerve spike is not a localized 3D Gaussian or Laplacian wave packet, rather it is a 3D ring encompassing the diameter of a neural branch.
Komal Saxena, Pushpendra Singh, Pathik Sahoo, Subrata Ghosh, Daya Krishnanda, Kanad Ray, Daisuke Fujita, and Anirban Bandyopadhyay
Springer Nature Singapore
Anindya Pattanayak, Tanusree Dutta, Piyush Pranjal, Pushpendra Singh, Pathik Sahoo, Soumya Sarkar, and Anirban Bandyopadhyay
Springer Nature Singapore
Pushpendra Singh, Komal Saxena, Pathik Sahoo, Jhimli Sarkar, Subrata Ghosh, Kanad Ray, and Anirban Bandyopadhyay
Springer Nature Singapore
Anindya Pattanayak, Tanusree Dutta, Piyush Pranjal, Pushpendra Singh, Pathik Sahoo, Soumya Sarkar, and Anirban Bandyopadhyay
Springer Nature Singapore
Pushpendra Singh, Pathik Sahoo, Subrata Ghosh, Komal Saxena, Jhimli Sarkar Manna, Kanad Ray, Soami Daya Krishnananda, Roman R Poznanski, and Anirban Bandyopadhyay
IMR Press
The current action potential paradigm considers that all components beneath the neuron membrane are inconsequential. Filamentary communication is less known to the ionic signal transmission; recently, we have proposed that the two are intimately linked through time domains. We modified the atom probe-connected dielectric resonance scanner to operate in two-time domains, milliseconds and microseconds simultaneously for the first time. We resonate the ions for imaging rather than neutralizing them as patch clamps do; resonant transmission images the ion flow 103 times faster than the existing methods. We revisited action potential-related events by scanning in and around the axon initial segment (AIS). Four ordered structures in the cytoskeletal filaments exchange energy ~250 μs before a neuron fires, editing spike-time-gap-key to the brain's cognition. We could stop firing above a threshold or initiate a fire by wirelessly pumping electromagnetic signals. We theoretically built AIS, whose simulated electromagnetic energy exchange matched the experiment. Thus far, the scanner could detect & link uncorrelated biological events unfolding over 106 orders in the time scale simultaneously. Our experimental findings support a new dielectric resonator model of neuron functioning in various time domains, thus suggesting the dynamic anatomy of electrical activity as information-rich.
Pushpendra Singh, Komal Saxena, Pathik Sahoo, Subrata Ghosh, and Anirban Bandyopadhyay
American Physiological Society
Using dielectric resonance scanner, we show electromagnetic field connections between physically separated neurons. Electromagnetic field creates field lines that pass through gap junctions, connect Axon initial segment with the dendrites through Soma, and connect axonal or dendritic branches even if there is no synaptic junction. Consequently, many distinct loops connecting various branches form coexisting circuits. Our discovery suggests that physically appearing neural circuit is a fractional view of many simultaneously operating circuits in different time domains in a neural network.
Pushpendra Singh, Pathik Sahoo, Komal Saxena, Jhimli Sarkar Manna, Kanad Ray, Subrata Ghosh, and Anirban Bandyopadhyay
MDPI AG
Hodgkin and Huxley showed that even if the filaments are dissolved, a neuron’s membrane alone can generate and transmit the nerve spike. Regulating the time gap between spikes is the brain’s cognitive key. However, the time modula-tion mechanism is still a mystery. By inserting a coaxial probe deep inside a neuron, we have re-peatedly shown that the filaments transmit electromagnetic signals ~200 μs before an ionic nerve spike sets in. To understand its origin, here, we mapped the electromagnetic vortex produced by a filamentary bundle deep inside a neuron, regulating the nerve spike’s electrical-ionic vortex. We used monochromatic polarized light to measure the transmitted signals beating from the internal components of a cultured neuron. A nerve spike is a 3D ring of the electric field encompassing the perimeter of a neural branch. Several such vortices flow sequentially to keep precise timing for the brain’s cognition. The filaments hold millisecond order time gaps between membrane spikes with microsecond order signaling of electromagnetic vortices. Dielectric resonance images revealed that ordered filaments inside neural branches instruct the ordered grid-like network of actin–beta-spectrin just below the membrane. That layer builds a pair of electric field vortices, which coherently activates all ion-channels in a circular area of the membrane lipid bilayer when a nerve spike propagates. When biomaterials vibrate resonantly with microwave and radio-wave, simultaneous quantum optics capture ultra-fast events in a non-demolition mode, revealing multiple correlated time-domain operations beyond the Hodgkin–Huxley paradigm. Neuron holograms pave the way to understanding the filamentary circuits of a neural network in addition to membrane circuits.
Pushpendra Singh, J. E. Lugo, J. Faubert, Kanad Ray, and Anirban Bandyopadhyay
Springer Science and Business Media LLC
Noemí Sanchez-Castro, Martha Alicia Palomino-Ovando, Pushpendra Singh, Satyajit Sahu, Miller Toledo-Solano, Jocelyn Faubert, J. Eduardo Lugo, Anirban Bandyopadhyay, and Kanad Ray
MDPI AG
Each tubulin protein molecule on the cylindrical surface of a microtubule, a fundamental element of the cytoskeleton, acts as a unit cell of a crystal sensor. Electromagnetic sensing enables the 2D surface of microtubule to act as a crystal or a collective electromagnetic signal processing system. We propose a model in which each tubulin dimer acts as the period of a one-dimensional crystal with effective electrical impedance related to its molecular structure. Based on the mathematical crystal theory with one-dimensional translational symmetry, we simulated the electrical transport properties of the signal across the microtubule length and compared it to our single microtubule experimental results. The agreement between theory and experiment suggests that one of the most essential components of any Eukaryotic cell acts as a one-dimensional crystal.
Pushpendra Singh, Kanad Ray, Preecha Yupapin, Ong Chee Tiong, Jalili Ali, and Anirban Bandyopadhyay
Springer Singapore
Pushpendra Singh, Pathik Sahoo, Kanad Ray, Subrata Ghosh, and Anirban Bandyopadhyay
Springer Singapore
Pushpendra Singh, Kanad Ray, Preecha Yupapin, Ong Chee Tiong, Jalili Ali, and Anirban Bandyopadhyay
Springer Singapore
S. K. Vijay, M. R. Ahmad, B. H. Ahmad, S. Rawat, P. Singh, K. Ray, and A. Bandyopadhyay
Springer Singapore
Pushpendra Singh, Pathik Sahoo, Komal Saxena, Subrata Ghosh, Satyajit Sahu, Kanad Ray, Daisuke Fujita, and Anirban Bandyopadhyay
Springer Singapore
Pushpendra Singh, Pathik Sahoo, Komal Saxena, Subrata Ghosh, Satyajit Sahu, Kanad Ray, Daisuke Fujita, and Anirban Bandyopadhyay
Springer Singapore
Pushpendra Singh, Komal Saxena, Anup Singhania, Pathik Sahoo, Subrata Ghosh, Rutuja Chhajed, Kanad Ray, Daisuke Fujita, and Anirban Bandyopadhyay
MDPI AG
Time crystal was conceived in the 1970s as an autonomous engine made of only clocks to explain the life-like features of a virus. Later, time crystal was extended to living cells like neurons. The brain controls most biological clocks that regenerate the living cells continuously. Most cognitive tasks and learning in the brain run by periodic clock-like oscillations. Can we integrate all cognitive tasks in terms of running clocks of the hardware? Since the existing concept of time crystal has only one clock with a singularity point, we generalize the basic idea of time crystal so that we could bond many clocks in a 3D architecture. Harvesting inside phase singularity is the key. Since clocks reset continuously in the brain–body system, during reset, other clocks take over. So, we insert clock architecture inside singularity resembling brain components bottom-up and top-down. Instead of one clock, the time crystal turns to a composite, so it is poly-time crystal. We used century-old research on brain rhythms to compile the first hardware-free pure clock reconstruction of the human brain. Similar to the global effort on connectome, a spatial reconstruction of the brain, we advocate a global effort for more intricate mapping of all brain clocks, to fill missing links with respect to the brain’s temporal map. Once made, reverse engineering the brain would remain a mere engineering challenge.
Pushpendra Singh, Subrata Ghosh, Pathik Sahoo, Kanad Ray, Daisuke Fujita, and Anirban Bandyopadhyay
The Electromagnetics Academy
For the last half a century, neurophysiology has relied on patch-clamp, which neutralizes the ions to sense a signal. The smaller the patch, the efficiency is better. However, the limit has not been reached yet, and we accomplish it here. We add a spiral and a ring antenna to a coaxial probe to significantly reduce its self-resonance when the tip filters the ultra-low vibrations of protein’s sub-molecular parts (10−18 watts to 10−22 watts) in a living cell environment with 10−6-watt noise. A probe tip added by a cavity resonator & a dielectric resonator acquires four distinct ultra-low noise signals simultaneously from a biomolecule, which is not possible using a patch-clamp. Protein transmits ions and small molecules. Our probe estimates the ionic content of the molecule. Simultaneously it also measures the dipolar oscillations of its sub-molecular parts that regulates ionic interaction. We experimentally measure signals over a wide frequency domain. In that frequency domain, we map the mechanical, electrical, and magnetic vibrations of the element and record the relationship between its electric and ionic conductions. Dimension wise it is the ultimate resolution, consistent both in silico & in real experiments with the neuron cells — the atomic pen instantly monitors a large number of dynamic molecular centers at a time.