Tomass Kozlovskis

Verified email at

Research Assistant, Faculty of Civil Engineering, Institute of Civil Engineering and Renovation
Riga Technical University



Bachelor of Civil Engineering, Riga Technical University, Faculty of Civil Engineering, Riga, Latvia (September 2017 — Present: Professional Bachelor's Degree)
Bachelor of Architectural Technology and Construction Management, Copenhagen School of Design and Technology, Copenhagen, Denmark (September 2013 — February 2016: Professional Bachelor's Degree)
Architectural Technology, George Brown College, Toronto, Ontario, Canada (September 2013 — December 2013: Exchange studies abroad, 1 semester)


Innovative cement composites, digital image correlations (DIC), long-term properties of materials, creep, concrete


Scopus Publications

Scopus Publications

  • Drying Shrinkage Deformation Comparison between Foam Concrete, Geopolymer Concrete, Disintegrated, and Non-disintegrated Cement Mortar
    R Gailitis, A Sprince, L Pakrastins, G Sahmenko, and T Kozlovskis

    IOP Conference Series: Materials Science and Engineering, ISSN: 17578981, eISSN: 1757899X, Volume: 660, Published: 5 December 2019 IOP Publishing

  • Comparison of the long-term properties in compression of different size foamed concrete
    Rihards Gailītis, Andina Sprince, Leonids Pakrastins, Genadijs Shakhmenko, and Tomass Kozlovskis

    Vide. Tehnologija. Resursi - Environment, Technology, Resources, ISSN: 16915402, Pages: 41-44, Published: 2019 Rezekne Academy of Technologies
    Foamed concrete has been used as a building material since the early 1920s. In the beginning, it was used as an insulation material with very low density. Since then there have been attempts to make this material more load-bearing and structural. In the present-day foamed concrete is being used in soil reinforcement, manufacturing of building blocks and other sorts of construction materials. [1] The aim of this article is to determine long-term properties and strength of foamed concrete specimens as well as compare the results between two differently sized foamed concrete specimens. The size of creep and shrinkage specimens were Ø46x190 mm and Ø75x180 mm. The creep properties of the specimens were determined by loading them with 20% of the ultimate stress value. [2] The compressive strength, creep and specific creep of specimens were determined as well as specimen size factor to creep deformations.



    Research Assistant at Riga Technical University, Institute of Civil Engineering and Renovation, Riga, Latvia (April 2019 — Present)
    Designer, CAD Tracer at SIA JaunRigaECO, Riga, Latvia (October 2018 — October 2019)
    Designer, CAD Tracer at Wolf System SIA, Cesis, Latvia (July 2018 — August 2018)
    Designer, CAD Tracer at Wolf System SIA, Cesis, Latvia (April 2016 — August 2017)