Zero-divisor graph of semisimple group-rings Krishnan Paramasivam and K. Muhammed Sabeel World Scientific Pub Co Pte Ltd Let [Formula: see text], [Formula: see text], [Formula: see text] denote the zero-divisor graph, compressed zero-divisor graph and annihilating ideal graph of a commutative ring [Formula: see text], respectively. In this paper, we prove that [Formula: see text] for a semisimple commutative ring [Formula: see text] and represent [Formula: see text] as a generalized join of a finite set of graphs. Further, we study the zero-divisor graph of a semisimple group-ring [Formula: see text] and proved several structural properties of [Formula: see text] and [Formula: see text], where [Formula: see text] is a field with [Formula: see text] elements and [Formula: see text] is a cyclic group with [Formula: see text] elements.
In this paper, we provide few results on the group distance magic labeling of lexicographic product and direct product of two graphs. We also prove some necessary conditions for a graph to be group distance magic and provide a characterization for a tree to be group distance magic.
On group vertex magic graphs N. Kamatchi, K. Paramasivam, A.V. Prajeesh, K. Muhammed Sabeel, and S. Arumugam Informa UK Limited Abstract Let G = ( V ( G ) , E ( G ) ) be a simple undirected graph and let A be an additive abelian group with identity 0. A mapping l : V ( G ) → A ∖ { 0 } is said to be a A -vertex magic labeling of G if there exists an element μ of A such that w ( v ) = ∑ u ∈ N ( v ) l ( u ) = μ for any vertex v of G , where N ( v ) is the open neighborhood of v . A graph G that admits such a labeling is called an A -vertex magic graph. If G is A -vertex magic graph for any nontrivial abelian group A , then G is called a group vertex magic graph. In this paper, we obtain a few necessary conditions for a graph to be group vertex magic. Further, when A ≅ Z 2 ⊕ Z 2 , we give a characterization of trees with diameter at most 4 which are A -vertex magic.
A note on handicap incomplete tournaments Appattu Vallapil Prajeesh, Krishnan Paramasivam, and Nainarraj Kamatchi Springer International Publishing An equalized incomplete tournament EIT(p, r) on p teams which are ranked from 1 to p, is a tournament in which every team plays against r teams and the total strength of the opponents that every team plays with is a constant. A handicap incomplete tournament HIT(p, r) on p teams is a tournament in which every team plays against r opponents in such a way that
RECENT SCHOLAR PUBLICATIONS
On hv-neighborhood group contant sum array S Karthik, K Paramasivam Discrete Mathematics 348 (7), 114456 2025
On determining number and metric dimension of zero-divisor graphs M Sabeel. K, K Paramasivam arXiv preprint arXiv:2308.00796 2023
Group vertex magicness of product graphs and trees S Karthik, M Sabeel K, K Paramasivam arXiv e-prints, arXiv: 2302.10554 2023
A characterization of group vertex magic trees of diameter up to 5 M Sabeel K, K Paramasivam, AV Prajeesh, N Kamatchi, S Arumugam Australasian Journal of Combinatorics 85 (1), 49-60 2023
A note on distance magic index of partite graphs E Srinivasan, AV Prajeesh, K Paramasivam arXiv preprint arXiv:2209.00997 2022
Zero-divisor graph of semisimple group-rings K Paramasivam, KM Sabeel Journal of Algebra and Its Applications 21 (02), 2250028 2022
Quasimagic rectangles D Froncek, K Paramasivam, AV Prajeesh Journal of Combinatorial Designs 30 (3), 193-202 2022
(a, d)-distance antimagicness of disconnected 2-regular graphs AV Prajeesh, M Sabeel K, K Paramasivam AIP Conference Proceedings 2336, pp: 050007(1-6) (2021) 2021
Maximal super edge-magic graph and its strength AV Prajeesh, J Kolayil, K Paramasivam AIP Conference Proceedings 2336, pp: 050006(1-7) (2021) 2021
Notes on group distance magicness of product graphs AV Prajeesh, K Paramasivam Contributions to Discrete Mathematics 16 (1), 72-88 2021
A Characterization for -Vertex Magicness of Trees with Diameter 5 MS Kollaran, AV Prajeesh, K Paramasivam International Conference on Computational Sciences-Modelling, Computing and 2020
On distance magic Harary graphs AV Prajeesh, K Paramasivam, KM Kathiresan Utilitas Mathematica 115, 251-266 2020
On group vertex magic graphs N Kamatchi, K Paramasivam, AV Prajeesh, K M Sabeel, S Arumugam AKCE International Journal of Graphs and Combinatorics 17 (1), 461-465 2020
A note on handicap incomplete tournaments AV Prajeesh, K Paramasivam, N Kamatchi International Workshop on Combinatorial Algorithms (IWOCA, Pisa), 1-9 2019
On distance magic Harary graphs AV Prajeesh, K Paramasivam arXiv preprint arXiv:1809.07382 2018
Notes on group distance magicness of product graphs AV Prajeesh, K Paramasivam arXiv preprint arXiv:1808.01631 2018
Distance magic index one graphs AV Prajeesh, K Paramasivam arXiv preprint arXiv:1808.00951 2018
Super edgemagic strength of new classes of graphs III M Miller, A Victor Devadoss, K Paramasivam International Conference on Mathematics and Computer Science,, 34-36 2007
On coloring a commutative semiring K Paramasivam, RS Rajadurai, WB Vasantha 11th Workshop on Graph Theory (CID 2005) 1, 48 2005
Some new classes of super edge-magic graphs K Paramasivam, RAH Raja Graphs, Combinatorics, Algorithms and Applications, 85-88 2005
MOST CITED SCHOLAR PUBLICATIONS
On group vertex magic graphs N Kamatchi, K Paramasivam, AV Prajeesh, K M Sabeel, S Arumugam AKCE International Journal of Graphs and Combinatorics 17 (1), 461-465 2020 Citations: 12
A characterization of group vertex magic trees of diameter up to 5 M Sabeel K, K Paramasivam, AV Prajeesh, N Kamatchi, S Arumugam Australasian Journal of Combinatorics 85 (1), 49-60 2023 Citations: 7
Quasimagic rectangles D Froncek, K Paramasivam, AV Prajeesh Journal of Combinatorial Designs 30 (3), 193-202 2022 Citations: 5
A Characterization for -Vertex Magicness of Trees with Diameter 5 MS Kollaran, AV Prajeesh, K Paramasivam International Conference on Computational Sciences-Modelling, Computing and 2020 Citations: 4
A note on handicap incomplete tournaments AV Prajeesh, K Paramasivam, N Kamatchi International Workshop on Combinatorial Algorithms (IWOCA, Pisa), 1-9 2019 Citations: 3
Super edge magic strength of some new classes of graphs-II K Paramasivam Graphs, Combinatorics, Algorithms and Applications, 79-83 2005 Citations: 3
Super magic strength of some new classes of graphs KM Kathiresan, K Paramasivam ANJAC Journal of Sciences 1 (2), 5–10 2002 Citations: 3
On distance magic Harary graphs AV Prajeesh, K Paramasivam, KM Kathiresan Utilitas Mathematica 115, 251-266 2020 Citations: 2
On distance magic Harary graphs AV Prajeesh, K Paramasivam arXiv preprint arXiv:1809.07382 2018 Citations: ry graphs
Some new classes of super edge-magic graphs K Paramasivam, RAH Raja Graphs, Combinatorics, Algorithms and Applications, 85-88 2005 Citations: 2
Zero-divisor graph of semisimple group-rings K Paramasivam, KM Sabeel Journal of Algebra and Its Applications 21 (02), 2250028 2022 Citations: 1
(a, d)-distance antimagicness of disconnected 2-regular graphs AV Prajeesh, M Sabeel K, K Paramasivam AIP Conference Proceedings 2336, pp: 050007(1-6) (2021) 2021 Citations: 1
Notes on group distance magicness of product graphs AV Prajeesh, K Paramasivam Contributions to Discrete Mathematics 16 (1), 72-88 2021 Citations: 1
Notes on group distance magicness of product graphs AV Prajeesh, K Paramasivam arXiv preprint arXiv:1808.01631 2018 Citations: e magicness of product graphs