saikat Gochhait

@siu.edu.in

Assistant Professor Academic Level 12 7th Pay CPC
Symbiosis International Deemed University



                          

https://researchid.co/sgochhait

Dr. Saikat Gochhait teaches at Symbiosis Institute of Digital & Telecom Management, Symbiosis International Deemed University Pune, India and Neurosciences Research Institute-Samara State Medical University, Russia. He is Ph.D and Post-Doctoral Fellow from the UEx, Spain and National Dong Hwa University, Taiwan. He was Awarded DITA and MOFA Fellowship in 2017 and 2018. His research publication with foreign authors is indexed in Scopus, ABDC, and Web of Science. He is a Senior IEEE member.

EDUCATION

Post Doctoral Fellow - Uex, Spain
Post Doctoral Fellow - National Dong Hwa University, Taiwan
PhD - Sambalpur University

RESEARCH INTERESTS

Technology Management
Marketing
Healthcare
Entrepreneurship

FUTURE PROJECTS

Neurosciences

NeuroMarketing


Applications Invited
Collaborators

Entreprenuership

Women Entrepreneurs


Applications Invited
Collaborators
64

Scopus Publications

2777

Scholar Citations

25

Scholar h-index

58

Scholar i10-index

Scopus Publications

  • NFTs in Education: A Model for Creation of NFTivized Course Completion Certificates


  • Giant Armadillo Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems
    Omar Alsayyed, Tareq Hamadneh, Hassan Al-Tarawneh, Mohammad Alqudah, Saikat Gochhait, Irina Leonova, Om Parkash Malik, and Mohammad Dehghani

    MDPI AG
    In this paper, a new bio-inspired metaheuristic algorithm called Giant Armadillo Optimization (GAO) is introduced, which imitates the natural behavior of giant armadillo in the wild. The fundamental inspiration in the design of GAO is derived from the hunting strategy of giant armadillos in moving towards prey positions and digging termite mounds. The theory of GAO is expressed and mathematically modeled in two phases: (i) exploration based on simulating the movement of giant armadillos towards termite mounds, and (ii) exploitation based on simulating giant armadillos’ digging skills in order to prey on and rip open termite mounds. The performance of GAO in handling optimization tasks is evaluated in order to solve the CEC 2017 test suite for problem dimensions equal to 10, 30, 50, and 100. The optimization results show that GAO is able to achieve effective solutions for optimization problems by benefiting from its high abilities in exploration, exploitation, and balancing them during the search process. The quality of the results obtained from GAO is compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that GAO presents superior performance compared to competitor algorithms by providing better results for most of the benchmark functions. The statistical analysis of the Wilcoxon rank sum test confirms that GAO has a significant statistical superiority over competitor algorithms. The implementation of GAO on the CEC 2011 test suite and four engineering design problems show that the proposed approach has effective performance in dealing with real-world applications.


  • Application of Fog Computing in Healthcare 4.0: A Bibliometric Study
    Siddharth Mantraratnam, Saikat Gochhait, Ahmed J. Obaid, and A. H. Radie

    AIP Publishing

  • Internet of Things (IoT) Enabled Healthcare System for Tackling the Challenges of Covid-19 – A Bibliometric Study
    Shalini Sinha, Saikat Gochhait, Ahmed J. Obaid, Azmi Shawkat Abdulbaqi, Watheq Naeem Alwan, Mohammed Ibrahim Mahdi, and Muthmainnah

    AIP Publishing

  • Application of Big Data Analytics for Health Care – A Study on COVID-19
    Ambuj Mohan, Saikat Gochhait, Ahmed J. Obaid, Muthmainnah, and Miguel Cardoso

    AIP Publishing

  • Breast Cancer Classification Using Synthesized Deep Learning Model with Metaheuristic Optimization Algorithm
    Selvakumar Thirumalaisamy, Kamaleshwar Thangavilou, Hariharan Rajadurai, Oumaima Saidani, Nazik Alturki, Sandeep kumar Mathivanan, Prabhu Jayagopal, and Saikat Gochhait

    MDPI AG
    Breast cancer is the second leading cause of mortality among women. Early and accurate detection plays a crucial role in lowering its mortality rate. Timely detection and classification of breast cancer enable the most effective treatment. Convolutional neural networks (CNNs) have significantly improved the accuracy of tumor detection and classification in medical imaging compared to traditional methods. This study proposes a comprehensive classification technique for identifying breast cancer, utilizing a synthesized CNN, an enhanced optimization algorithm, and transfer learning. The primary goal is to assist radiologists in rapidly identifying anomalies. To overcome inherent limitations, we modified the Ant Colony Optimization (ACO) technique with opposition-based learning (OBL). The Enhanced Ant Colony Optimization (EACO) methodology was then employed to determine the optimal hyperparameter values for the CNN architecture. Our proposed framework combines the Residual Network-101 (ResNet101) CNN architecture with the EACO algorithm, resulting in a new model dubbed EACO–ResNet101. Experimental analysis was conducted on the MIAS and DDSM (CBIS-DDSM) mammographic datasets. Compared to conventional methods, our proposed model achieved an impressive accuracy of 98.63%, sensitivity of 98.76%, and specificity of 98.89% on the CBIS-DDSM dataset. On the MIAS dataset, the proposed model achieved a classification accuracy of 99.15%, a sensitivity of 97.86%, and a specificity of 98.88%. These results demonstrate the superiority of the proposed EACO–ResNet101 over current methodologies.


  • Metadata Analysis to Get Insight into Drug Resistant Ovarian Cancer
    Sujata Roy, Jeyalakshmi Jeyabalan, Saikat Gochhait, Poonkuzhali Sugumaran, and M. Michael Gromiha

    International Information and Engineering Technology Association

  • IoT Platform-Based Prototype Model of an Adaptive and Intelligent Traffic Lighting System
    M.S. Priyadarshini, Annareddy Sravani, Saikat Gochhait, Ankit Bhatt, Mohit Bajaj, and Mohamed Metwally Mahmoud

    IEEE
    Street lighting is an important concept on which we have to focus more because we spend more than 40 percent of the allotted budget towards it. In the present scenario most of the street lighting systems are inefficient in reducing the cost. An effective solution is reducing the energy consumption. This paper deals with monitoring and controlling the street lights through IoT and energy consumption reduction of the street lights in a smart way. The proposed system can make the street light to glow with different intensities as per the scheduled timings also depending on the traffic as well as on climatic conditions Transformer and relays are used to reduce the intensity of the light by reducing the voltage. Sensing the darkness and detection of objects can be carried out by Light Dependent Sensor (LDR) and Passive Infrared (PIR) sensors. Master node (Raspberry Pi) and Slave node (Arduino) communicate each other through RF module. Current and Potential transformers are used to measure the current and voltage readings respectively and the values will be uploaded to server and these can be monitored from anywhere in the world. This project helps not only to the government but also to the educational institutions, offices and industries.




  • Aquaporin-4 as the Main Element of the Glymphatic System for Clearance of Abnormal Proteins and Prevention of Neurodegeneration: A Review
    Igor Shirolapov, Alexander Zakharov, Saikat Gochhait, Vasiliy Pyatin, Mariya Sergeeva, Natalia Romanchuk, Yuliya Komarova, Vladimir Kalinin, Olga Pavlova, and Elena Khivintseva

    World Scientific and Engineering Academy and Society (WSEAS)
    Background: In the last decade, the concept of the Glymphatic system as a complexly organized perivascular transport has been formed, it “connects” the cerebrospinal fluid with the lymphatic vessels of the meninges through the extracellular space of the brain. The exact molecular mechanisms of the functioning of the glymphatic pathway have not been fully characterized, but its key role in the cerebral clearance of metabolites and neurotoxic substances is noted. Neurodegenerative diseases affect millions of people around the world, and the most common pathologies from this heterogeneous group of diseases are Alzheimer's disease and Parkinson's disease. Their pathogenesis is based on abnormal protein aggregation, formation of neurofibrillary insoluble structures, and inefficient removal of neurotoxic metabolites. Aim: This article reviewed the evidence linking glymphatic system dysfunction and the development of human neurodegenerative diseases, and noted the key role of aquaporin-4 in the clearance of metabolites from the brain. Setting and Design: The actual sources of data were compiled and reviewed from PubMed, Scopus, and Web of Sciences from 2012 to 2023. Result and Discussion: Glial-dependent perivascular transport promotes the clearance of interstitial solutes, including beta-amyloid, synuclein, and tau protein, from the parenchymal extracellular space of the brain in normal and pathological conditions. An increase in the proportion of metabolites and pathological proteins in the dysfunction of the glymphatic pathway enhances the progression of cognitive impairment and neurodegenerative processes. In turn, the aging process, oxidative stress, and neuroinflammation in Alzheimer's disease and Parkinson's disease contribute to reactive astrogliosis and may impair glymphatic clearance. Conclusion: This review describes in detail the features of the glymphatic system and discusses that its dysfunction plays a fundamental significance in the pathological accumulation of metabolites during the progression of neurodegeneration and neuroinflammation. Understanding these processes will make it possible to take new steps in the prevention and treatment of neurodegenerative diseases.

  • Cultural factors and Arab female entrepreneurs in Spain
    Saikat Gochhait, Miriam Cano Rubio, Rocío Martínez Jiménez, and Sabiha Fazalbhoy

    Inderscience Publishers

  • Green Internet of Things (GIoT) Based Smart Security Surveillance Cobot
    Saikat Gochhait and Manisha Paliwal

    IEEE
    Developing a GIOT-enabled surveillance cobot is the objective of this study. The cobot transmits real-time video footage from a preset environment to a base control station via internet or Wi-Fi. In this methodology, the cobot is controlled in real time by a human controller, who uses the data to operate the cobot. The cobot is small and independent, and it transmits data wirelessly. An application that monitors and controls a cobot's movements using a wireless network and a Raspberry Pi board can help detect and monitor terrorist attacks around the world.


  • A Strategic Data Protection Plan for the Healthcare Industry-A Review
    Aritra Mitra, Saikat Gochhait, Ahmed J. Obaid, and Mohammed Ayad Alkhafaji

    IEEE
    Since revolutionary digitization has taken hold in all industries and companies, the excessive growth of data is overtaking the world around us. With this explosion of data comes an increased responsibility to protect it from external threats, exploitation and misuse of information. The healthcare industry is expanding its horizons with the latest cutting-edge technologies such as robotic process automation, cloud transformation and digitization, generating several zettabytes of data every year. With this excessive data growth, the responsibility to protect the data from external threats, exploitation and information misuse is also increasing. The steep rise in data breaches, disclosure of important public and corporate data, fraudulent activities such as threatening phone calls, false insurance claims, and even illegal monetary claims have rocked the world. This in turn increases the urgency and need for an advanced, standardized data protection strategy. In this research study, the Scopus database has been used as a source for a bibliometric analysis to discuss recent research activities on big data protection. The expected outcome of this research is a broader understanding of how organizations operating in the healthcare sector are addressing overall data management by shaping existing organizational policies and adapting new security standards.

  • Data Security in Healthcare: Enhancing the Safety of Data with CyberSecurity
    Mayuri Puri and Saikat Gochhait

    IEEE
    Cyberattacks are used to steal money, data, or intellectual property, but the goal is increasingly to produce overt disruption or political influence. Healthcare is more vulnerable to cyberattacks than other industries due to inherent weaknesses in its security posture. In addition to medical equipment and other systems connected to IT networks, cybersecurity threats and vulnerabilities can pose a threat to the confidentiality, resilience, and veracity of those systems. As a result of the rich supply of valuable data, Healthcare makes a good target for cybercriminals. Additionally, while Cybersecurity is critical for patient safety, it has an unreliable track record. Breach of infrastructure has resulted in millions of health records being stolen, potentially putting patients' lives at risk. This necessitates the integration of Cybersecurity into patient safety. Before these attacks, many security experts struggled to persuade corporate executives of the necessity of cyber security; significantly, a great deal can be gained, in the long run, from risk mitigation, through both cost savings and reputation protection. A holistic solution to prioritizing Cybersecurity in the healthcare business necessitates cultural transformations, enhanced leadership communication, and changes in how practitioners conduct their roles in the clinical setting.


  • Review and Analysis of usage of Spatio-Temporal Game Analytics
    Harsh Verma and Saikat Gochhait

    IEEE
    The primary purpose of Spatio-Temporal Game Analytics (STGA) is to be the primary tool for the business models that are used in the gaming industry for enhancing the player experience to next level. Due to the worldwide expansion in the gaming industry business intelligence and game analytics are being frequently deployed in the value chain of the industry. However, it is still necessary to conduct relevant studies for precise analysis and classifications. With the focus towards spatio-temporal game analytics and Business Intelligence (BI) applications in the gaming industry, the research paper delivers a comprehensive literature review of all the analytics and BI applications that can be applicable to the industry.In this study, five crucial concerns are looked at and explored in the recent literature reviews. The traditional game value chain has been explored which could easily incorporate game analytics into the system for enhancement. Secondly, the main objective behind the use of analytics in the video game industry was determined. Third, we described the issues and irregularities that game analytics can address in the gaming industry. Fourth, we offered multiple algorithms that can be used for predictions in the gaming industry. Finally, this study draws attention to the topics that have already been covered in various literature reviews but still need more research investigation to satisfy the analysis. On the basis of the categories identified after the mapping and analysis of the reviews, certain limitations associated with the game analytic have been addressed and also future study areas that can be added to the research have also been identified and mentioned as future scope areas.

  • Emerging Cybersecurity Attacks in the Era of Digital Transformation
    Sweta Mishra and Saikat Gochhait

    IEEE
    The rapid digital transformation across industries, including manufacturing, has created significant blind spots for organizations when it comes to security. The threat surface grows as businesses engage more in automation, scale their operations, and integrate IoT, and many security teams struggle to stay up. However, in the age of digitalization, the emphasis must move from protecting network perimeters to protecting data that is dispersed across systems, devices, and the cloud. Organizations must maintain a strong asset management process, be resilient to cyber risks, and generate business value by being ahead of the curve when it comes to managing cyber threats.

  • Classification of Machine Learning and Power Requirements for HAI (Human Activity Identification)
    Isshita Paliwal and Saikat Gochhait

    IEEE
    Human Activity Recognition(HAR) is used in many applications, such as surveillance, anti-terrorists, anti-crime securities, medical, life logging, and assistance. Besides its positive effect on well-being, the recognition of human activity has many applications. One of the key research topics in the fields of computer vision and machine learning is the human capacity for activity recognition. Pose estimation and categorization algorithms, which are now available for use on pictures or video input, it is now possible to gather and store information on several elements of human mobility in a free environment. A hierarchical structure is inherent in human activities, which can be categorized into three levels based on the nature of the action. A typical example of a movement happens when one walks, talks, stands, or sits indoors, which are everyday indoor activities. In addition, they may be more focused on activities such as those performed in kitchens or factories. However, A major challenge for activity recognition is the diversity of methods used by individuals. As a technology assistive for eldercare and healthcare, it is expected to be used mainly with the Internet of Things (IoT). The paper has demonstrated that it follows a hierarchy of analytical approaches toward the issue in a clearly defined form, and the paper showed numerous strategies that have been a part of various other studies in the field. Even though a notable amount of progress has been observed in this critical area, there is still space for further improvements in the subject topic, particularly when it comes to applying cutting-edge categorization algorithms to a variety of problems. In order to deal with these challenges, Pose estimation and classification algorithms have been used to evaluate data collection and discover human activities accurately. This study also examines the activities performed by the user during Video/Image input.


  • REGRESSION MODEL-BASED SHORT-TERM LOAD FORECASTING FOR LOAD DISPATCH CENTER
    Saikat Gochhait and Deepak Sharma

    Yayasan Riset dan Pengembangan Intelektual
    Forecasting load is an integral part of the planning, operation, and control of power systems. This paper is part of a research effort aimed at developing better energy demand forecasting models for load dispatch centers (LDCs) in Indian states as part of an ambitious project utilizing artificial intelligence-based load forecasting models. In this paper, we present a half hourly load forecasting method for the energy management system of the project that will be used at 33 /11 kV and 0.415 kV substations with good accuracy. The paper uses the half-hourly load consumption dataset collected from MSEDCL for Maharashtra from July 1, 2020 through August 31, 2022. This paper evaluates 24 regression model-based half hourly based load forecasting algorithms for ALE PHATA load based on the load consumption dataset and the collected meteorological dataset. The 24 models in MATLAB Regression belong to five types of regression models: Linear Regression, Regression Trees, Support Vector Machines (SVM), Gaussian Process Regression (GPR), Ensemble of Trees, and Neural Networks. As a consequence of their nonparametric kernel-based probabilistic nature, the GPR family of models demonstrates the best load forecasting performance. Least squares estimation was used to determine the regression coefficients. There is a direct correlation between load in an electrical power system and temperature, due point, and seasons, as well as a correlation between load and previous load consumption. Therefore, the input variables are Wet Bulb Temperature at 2 Meters (C), Dew/Frost Point at 2 Meters (C), Temperature at 2 Meters (C), Relative Humidity at 2 Meters (%), Specific Humidity at 2 Meters (g/kg) and Wind Speed at 10 Meters (m/s). The mean absolute percentage error and the R squared are used to validate or verify the accuracy of the model, which is shown in the results section.  Based on this study, two GPR models are recommended for load forecasting, the Rational Quadratic GPR and the Exponential GPR and Exponential GPR as final model.

RECENT SCHOLAR PUBLICATIONS

  • Pufferfish Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems
    O Al-Baik, S Alomari, O Alssayed, S Gochhait, I Leonova, U Dutta, ...
    Biomimetics 9 (2), 65 2024

  • NFTs in Education: A Model for Creation of NFTivized Course Completion Certificates
    M Paliwal, OJ Bapat, S Gochhait
    AsTEN Journal of Teacher Education 7 2023

  • Giant Armadillo Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems
    O Alsayyed, T Hamadneh, H Al-Tarawneh, M Alqudah, S Gochhait, ...
    Biomimetics 8 (8), 619 2023

  • A big-data-driven matching model based on deep reinforcement learning for cotton blending
    H Xia, Y Wang, S Jasimuddin, JZ Zhang, A Thomas
    International Journal of Production Research 61 (22), 7573-7591 2023

  • Industry convergence and value innovation: A bibliometric analysis and systematic review
    Y Chen, L Shen, X Zhang, Y Chen
    Kybernetes 52 (10), 4576-4610 2023

  • Initial translation and validation of the Brief Version of the COVID-19 Stress Scales (CSS-B)
    R Bandari, M Heravi-Karimooi, M Tebyanian, H Shahcheragh
    Payesh (Health Monitor) 22 (5), 617-625 2023

  • Framework using green blockchain for developing clinical decision support system
    S Pandey, S Gochhait
    AIP Conference Proceedings 2842 (1) 2023

  • IoT Platform-Based Prototype Model of an Adaptive and Intelligent Traffic Lighting System
    MS Priyadarshini, A Sravani, S Gochhait, A Bhatt, M Bajaj, MM Mahmoud
    2023 4th IEEE Global Conference for Advancement in Technology (GCAT), 1-6 2023

  • Data mining-based innovative model for mental health of college students using IoT and big data analysis
    X Shen
    Soft Computing 27 (19), 14483-14495 2023

  • Application of fog computing in healthcare 4.0: A bibliometric study
    S Mantraratnam, S Gochhait, AJ Obaid, AH Radie
    AIP Conference Proceedings 2736 (1) 2023

  • Application of big data analytics for health care–A study on COVID-19
    A Mohan, S Gochhait, AJ Obaid, M Muthmainnah, M Cardoso
    AIP Conference Proceedings 2736 (1) 2023

  • Internet of things (IoT) enabled healthcare system for tackling the challenges of Covid-19–A bibliometric study
    S Sinha, S Gochhait, AJ Obaid, AS Abdulbaqi, WN Alwan, MI Mahdi, ...
    AIP Conference Proceedings 2736 (1) 2023

  • Application of artificial intelligence in Ukrainian education of the future
    S Vasylyuk-Zaitseva, H Kosenyuk, I Tanasiichuk, J Boyko
    Futurity Education 3 (3), 79-107 2023

  • The Artificial Intelligence Revolution in Digital Finance in Saudi Arabia: A Comprehensive Review and Proposed Framework
    HH Al-Baity
    Sustainability 15 (18), 13725 2023

  • Law Enforcement and Digital Policing of the Dark Web: An Assessment of the Technical, Ethical and Legal Issues
    C Warner
    Applications for Artificial Intelligence and Digital Forensics in National 2023

  • Breast Cancer Classification Using Synthesized Deep Learning Model with Metaheuristic Optimization Algorithm
    S Thirumalaisamy, K Thangavilou, H Rajadurai, O Saidani, N Alturki, ...
    Diagnostics 13 (18), 2925 2023

  • The Local News Industry's Challenge: Recruiting and Retaining Talent in a Multi-Platform Distribution Environment
    S Grissom
    Electronic News, 19312431231198029 2023

  • Towards Developing Big Data Analytics for Machining Decision-Making
    AK Ghosh, S Fattahi, S Ura
    Journal of Manufacturing and Materials Processing 7 (5), 159 2023

  • Handbook of Computational Sciences: A Multi and Interdisciplinary Approach
    AA Elngar, KK Singh, Z Polkowski
    John Wiley & Sons 2023

  • Which industrial sectors are affected by artificial intelligence? A bibliometric analysis of trends and Perspectives
    L Espina-Romero, JG Noroo Snchez, H Gutirrez Hurtado, ...
    Sustainability 15 (16), 12176 2023

MOST CITED SCHOLAR PUBLICATIONS

  • Blockchain technology: applications in health care
    S Angraal, HM Krumholz, WL Schulz
    Circulation: Cardiovascular quality and outcomes 10 (9), e003800 2017
    Citations: 492

  • Artificial intelligence (AI) applications for marketing: A literature-based study
    A Haleem, M Javaid, MA Qadri, RP Singh, R Suman
    International Journal of Intelligent Networks 2022
    Citations: 143

  • Inverting the impacts: Mining, conservation and sustainability claims near the Rio Tinto/QMM ilmenite mine in Southeast Madagascar
    C Seagle
    Journal of Peasant Studies 39 (2), 447-477 2012
    Citations: 139

  • The effect of top management support on innovation: The mediating role of synergy between organizational structure and information technology
    EM Al Shaar, SA Khattab, RN Alkaied, AQ Manna
    International Review of Management and Business Research 4 (2), 499 2015
    Citations: 97

  • Agile scrum issues at large-scale distributed projects: scrum project development at large
    A Khalid, SA Butt, T Jamal, S Gochhait
    International Journal of Software Innovation (IJSI) 8 (2), 85-94 2020
    Citations: 67

  • Digital Transformation in Healthcare: Technology Acceptance and Its Applications
    AI Stoumpos, F Kitsios, MA Talias
    International journal of environmental research and public health 20 (4), 3407 2023
    Citations: 65

  • Types of innovation and artificial intelligence: A systematic quantitative literature review and research agenda
    MM Mariani, I Machado, S Nambisan
    Journal of Business Research 155, 113364 2023
    Citations: 63

  • A systematic review on COVID-19 vaccine strategies, their effectiveness, and issues
    SS Khandker, B Godman, MI Jawad, BA Meghla, TA Tisha, ...
    Vaccines 9 (12), 1387 2021
    Citations: 61

  • Entrepreneurship and structural change in dynamic territories: contributions from developed and developing countries
    LC Carvalho, C Rego, MR Lucas, MI Snchez-Hernndez, AB Noronha
    Springer 2018
    Citations: 56

  • A cross-country analysis of the determinants of customer recommendation intentions for over-the-top (OTT) platforms
    A Yousaf, A Mishra, B Taheri, M Kesgin
    Information & Management 58 (8), 103543 2021
    Citations: 53

  • The impact of artificial intelligence on branding: a bibliometric analysis (1982-2019)
    PS Varsha, S Akter, A Kumar, S Gochhait, B Patagundi
    Journal of Global Information Management (JGIM) 29 (4), 221-246 2021
    Citations: 53

  • 6G enabled industrial internet of everything: Towards a theoretical framework
    PK Padhi, F Charrua-Santos
    Applied System Innovation 4 (1), 11 2021
    Citations: 50

  • Agile project development issues during COVID-19
    SA Butt, S Misra, MW Anjum, SA Hassan
    Lean and Agile Software Development: 5th International Conference, LASD 2021 2021
    Citations: 46

  • Requirement engineering challenges in agile software development
    A Rasheed, B Zafar, T Shehryar, NA Aslam, M Sajid, N Ali, SH Dar, ...
    Mathematical Problems in Engineering 2021, 1-18 2021
    Citations: 43

  • Cloud enhances agile software development
    S Gochhait, SA Butt, T Jamal, A Ali
    Research Anthology on Agile Software, Software Development, and Testing, 491-507 2022
    Citations: 33

  • The impact of artificial intelligence on firm performance: an application of the resource-based view to e-commerce firms
    D Chen, JP Esperana, S Wang
    Frontiers in Psychology 13, 884830 2022
    Citations: 31

  • Bibliometric Analysis of Telemedicine and E-Health Literature.
    H Sikandar, Y Vaicondam, S Parveen, N Khan, MI Qureshi
    International Journal of Online & Biomedical Engineering 17 (12) 2021
    Citations: 31

  • Comparing the socio-economic implications of the 1918 Spanish flu and the COVID-19 pandemic in India: A systematic review of literature
    AS Sharma, D Ghosh, N Divekar, M Gore, S Gochhait, SS Shireshi
    International Social Science Journal 1 (1), 20 2021
    Citations: 31

  • Digital entertainment: The next evolution in service sector
    S Das, S Gochhait
    Springer Nature 2021
    Citations: 31

  • Elicitation of nonfunctional requirements in agile development using cloud computing environment
    M Younas, DNA Jawawi, MA Shah, A Mustafa, M Awais, MK Ishfaq, ...
    IEEE access 8, 209153-209162 2020
    Citations: 31

GRANT DETAILS

Department of Science and Industrial Research , Govt of India with Grant of Rs 13,000,00
Ministry of Foreign Affairs, Taiwan with Grant of Rs 12,000,00
University of Deusto, Spain with Research Grant of Rs 2,000,00
University of Extremadura, Spain with Research Grant of Rs 2,000,00
Samara State Medical University, Russia with Research Visit grant of Rs 2,500,00
Symbiosis International Deemed University with Travel and Research Grant of 4,000,000

INDUSTRY EXPERIENCE

IFGL Refractories Ltd