Arianna Ciullini

@istituto-besta.it

Neuropathology
Foundation IRCCS Neurological Institute "C. Besta", Milan, Italy

3

Scopus Publications

Scopus Publications

  • Secondary Protein Aggregates in Neurodegenerative Diseases: Almost the Rule Rather than the Exception
    Fabio Moda, Arianna Ciullini, Ilaria Linda Dellarole, Annalisa Lombardo, Nicole Campanella, Giuseppe Bufano, Federico Angelo Cazzaniga, and Giorgio Giaccone

    IMR Press
    The presence of protein aggregates is a hallmark of many neurodegenerative diseases, including Parkinson's disease (PD), Alzheimer's disease (AD), and frontotemporal lobar degeneration (FTLD). Traditionally, each disease has been associated with the aggregation of specific proteins, which serve as disease-specific biomarkers. For example, aggregates of α-synuclein (α-syn) are found in α-synucleinopathies such as PD, dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Similarly, AD is characterized by aggregates of amyloid-beta (Aβ) and tau proteins. However, it has been observed that these protein aggregates can also occur in other neurodegenerative diseases, contributing to disease progression. For instance, α-syn aggregates have been detected in AD, Down syndrome, Huntington's disease, prion diseases, and various forms of FTLD. Similarly, Aβ aggregates have been found in conditions like DLB and PD. Tau aggregates, in addition to being present in primary tauopathies, have been identified in prion diseases, α-synucleinopathies, and cognitively healthy aged subjects. Finally, aggregates of TDP-43, typically associated with FTLD and amyotrophic lateral sclerosis (ALS), have been observed in AD, progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), MSA, DLB, and other neurodegenerative diseases. These findings highlight the complexity of protein aggregation in neurodegeneration and suggest potential interactions and common mechanisms underlying different diseases. A deeper understating of this complex scenario may eventually lead to the identification of a better elucidation of the pathogenetic mechanisms of these devastating conditions and hopefully new therapeutic stragegies.

  • Approaching the Gut and Nasal Microbiota in Parkinson’s Disease in the Era of the Seed Amplification Assays
    Alessandra Consonni, Martina Miglietti, Chiara Maria Giulia De Luca, Federico Angelo Cazzaniga, Arianna Ciullini, Ilaria Linda Dellarole, Giuseppe Bufano, Alessio Di Fonzo, Giorgio Giaccone, Fulvio Baggi,et al.

    MDPI AG
    Parkinson’s disease (PD) is a neurodegenerative disorder often associated with pre-motor symptoms involving both gastrointestinal and olfactory tissues. PD patients frequently suffer from hyposmia, hyposalivation, dysphagia and gastrointestinal dysfunctions. During the last few years it has been speculated that microbial agents could play a crucial role in PD. In particular, alterations of the microbiota composition (dysbiosis) might contribute to the formation of misfolded α-synuclein, which is believed to be the leading cause of PD. However, while several findings confirmed that there might be an important link between intestinal microbiota alterations and PD onset, little is known about the potential contribution of the nasal microbiota. Here, we describe the latest findings on this topic by considering that more than 80% of patients with PD develop remarkable olfactory deficits in their prodromal disease stage. Therefore, the nasal microbiota might contribute to PD, eventually boosting the gut microbiota in promoting disease onset. Finally, we present the applications of the seed amplification assays to the study of the gut and olfactory mucosa of PD patients, and how they could be exploited to investigate whether pathogenic bacteria present in the gut and the nose might promote α-synuclein misfolding and aggregation.