@unilorin.edu.ng
Lecturer, Faculty of Engineering and Technology
Assistant Professor, Faculty of Engineering and Technology
Univeristy of Ilorin
Renewable Energy, Sustainability and the Environment, Mechanical Engineering, Materials Science, General Engineering
Scopus Publications
Scholar Citations
Scholar h-index
Scholar i10-index
Segun E. Ibitoye, Chanchal Loha, Rasheedat M. Mahamood, Tien-Chien Jen, Meraj Alam, Ishita Sarkar, Partha Das, and Esther T. Akinlabi
Springer Science and Business Media LLC
AbstractIntegrating innovation and environmental responsibility has become important in pursuing sustainable industrial practices in the contemporary world. These twin imperatives have stimulated research into developing methods that optimize industrial processes, enhancing efficiency and effectiveness while mitigating undesirable ecological impacts. This objective is exemplified by the emergence of biochar derived from the thermo-chemical transformation of biomass. This review examines biochar production methods and their potential applications across various aspects of the iron and steel industries (ISI). The technical, economic, and sustainable implications of integrating biochar into the ISI were explored. Slow pyrolysis and hydrothermal carbonization are the most efficient methods for higher biochar yield (25–90%). Biochar has several advantages- higher heating value (30–32 MJ/kg), more porosity (58.22%), and significantly larger surface area (113 m2/g) compared to coal and coke. However, the presence of biochar often reduces fluidity in a coal-biochar mixture. The findings highlighted that biochar production and implementation in ISI often come with higher costs, primarily due to the higher expense of substitute fuels compared to traditional fossil fuels. The economic viability and societal desirability of biochar are highly uncertain and vary significantly based on factors such as location, feedstock type, production scale, and biochar pricing, among others. Furthermore, biomass and biochar supply chain is another important factor which determines its large scale implementation. Despite these challenges, there are opportunities to reduce emissions from BF-BOF operations by utilizing biochar technologies. Overall, the present study explored integrating diverse biochar production methods into the ISI aiming to contribute to the ongoing research on sustainable manufacturing practices, underscoring their significance in shaping a more environmentally conscious future.
Segun E. Ibitoye, Rasheedat M. Mahamood, Tien-Chien Jen, Chanchal Loha, and Esther T. Akinlabi
Springer Science and Business Media LLC
AbstractIn developing nations, research output is limited due to factors like unreliable power supply and inadequate laboratory equipment. The high cost of purchasing completed laboratory equipment and the unavailability of accessories for imported equipment further contribute to this issue. A biomass densification machine was designed and constructed to address these challenges for teaching and research purposes. The machine was tested at five different compaction pressures (100, 200, 300, 400, and 500 kPa) using gelatinized cassava starch as a binder. The physical and mechanical characteristics of the produced fuel briquettes were investigated following ASTM standards and procedures reported in the literature. The results show that the physical and mechanical properties of the fuel briquettes increase with compaction pressure. The compressive strength, durability, and water resistance of the briquettes varied between 55 and 101 kN·m−2, 89–99%, and 20–120 min, respectively, while the compressed and relaxed densities range from 0.780 to 1.220 g·cm−3 and 0.670 to 0.990 g·cm−3, respectively. The machine performed satisfactorily because the briquettes’ characteristics were found to meet the specified ISO Standard (17225). The development of this machine will enable academic institutions, researchers, and students to harness the potential of biomass through the densification process without the challenges posed by imported equipment. The creation of the machine will also facilitate students’ hands-on learning. By providing an easily accessible and reliable platform, academic and research institutions can integrate biomass solid fuel production experiments into their curricula, fostering a thorough understanding of renewable energy solutions and supporting sustainable practices. Therefore, it can be recommended for teaching and research in developing nations. Incorporating an electronic component, such as a digital pressure gauge and electric hydraulic jack, is recommended for future research to enhance the performance.
Olalekan Adebayo Olayemi, Faith Oluwasegun Mustapha, Segun Emmanuel Ibitoye, Adebowale Martins Obalalu, Khaled Al-Farhany, and Umair Khan
Springer Science and Business Media LLC
Segun E. Ibitoye, Rasheedat M. Mahamood, Olalekan A. Olayemi, Tien-Chien Jen, Peter O. Omoniyi, Chanchal Loha, Emmanuel A. Akinola, and Esther T. Akinlabi
Springer Science and Business Media LLC
Segun E. Ibitoye, Rasheedat M. Mahamood, Tien-Chien Jen, Chanchal Loha, and Esther T. Akinlabi
Elsevier BV
Olalekan Adebayo Olayemi, Adebowale Martins Obalalu, Segun Emmanuel Ibitoye, Khaled Al‐Farhany, Temidayo Samsudeen Jolayemi, Abdulbaqi Jinadu, Tomisin Favour Ajide, and Isaac Kayode Adegun
Wiley
Peter Omoniyi, Segun Ibitoye, Olalekan Popoola, Peter Ikubanni, Adekunle Adeleke, Modupe Mahamood, Tien-Chien Jen, and Esther Akinlabi
EDP Sciences
Environmental pollution due to improper disposal of plastic waste has greatly degraded the livelihood of both humans and animals. In this article, polyethylene terephthalate (PET) bottles were used as reinforcement in scrap aluminum. The composite material was made through the stir-casting route. The samples were characterized using the microstructure, tensile strength, and hardness. Results show an increase in tensile strength up to 4% addition of PET and steady hardness reduction as reinforcement composition increases. However, the mechanical strength declines as reinforcement goes beyond 8%.
A. A. Samuel, A. Sulaiman, H. A. Ajimotokan, S. E. Ibitoye, T. K. Ajiboye, T. S. Ogedengbe, and I. O. Alabi
African Journals Online (AJOL)
This study examined the morphology and microstructural evolution of resin-bonded palm kernel and coconut shell grain-based abrasive grinding wheels and their physico-mechanical and tribological properties. Raw palm kernel shell (PKS) and coconut shell (CNS) samples were obtained, sorted, sun- and oven-dried, pulverised, and screened into fines of 250, 500 and 850 μm grain sizes, and blended at PKS to CNS mixing ratios of 1:0, 0:1, 1:2, 1:1 and 2:1, respectively. The blended grains, on a weight basis of the total aggregates, were bonded with 25 wt.% polyester resin and hardened and catalysed with 1.5 wt.% cobalt compound and methyl-ethyl ketone peroxide. The aggregates were moulded and compressed at a constant pressure of 18 MPa, ejected, and room-cured before being oven-cured to produce the wheels. The microstructural, water absorption, impact, flexural, hardness, and wear rate properties of the produced samples were evaluated. The properties studied were significantly influenced by grain sizes and mixing ratios of the PKS and CNS in the wheels. The least hardness value, 6.42 HRB, and wear rate, 0.44 mg/m were found in wheels produced from aggregates with pure PKS content with 850 and 250 μm grain sizes, respectively. The wheels' durability qualities suggest they could be used as abrasive grinding wheels, in particular, for wood cutting and finishing processes.
Segun E. Ibitoye, Rasheedat M. Mahamood, Tien-Chien Jen, and Esther T. Akinlabi
Springer Nature Singapore
Segun E. Ibitoye, Rasheedat M. Mahamood, Tien-Chien Jen, and Esther T. Akinlabi
Springer Nature Singapore
Kajogbola R. Ajao, Segun E. Ibitoye, Adedire D. Adesiji, and Esther T. Akinlabi
MDPI AG
The additive manufacturing process creates objects directly by stacking layers of material on each other until the required product is obtained. The application of additive manufacturing technology for teaching and research purposes is still limited and unpopular in developing countries, due to costs and lack of accessibility. In this study, an extruding-based 3D printing additive manufacturing technology was employed to design and construct a low-cost-high-accessibility 3D printing machine to manufacture plastic objects. The machine was designed using SolidWorks 2020 version with a 10 × 10 × 10 cm3 build volume. The fabrication was carried out using locally available materials, such as PVC pipes for the frame, plywood for the bed, and Zinc Oxide plaster for the bed surface. Repetier firmware was the operating environment for devices running on the computer operating system. Cura was used as the slicing software. The fabricated machine was tested, and the printer produced 3D components with desired structural dimensions. The fabricated 3D printer was used to manufacture some plastic objects using PLA filament. The recommended distance between the nozzle tip and the bed is 0.1 mm. The constructed 3D printer is affordable and accessible, especially in developing nations where 3D printing applications are limited and unpopular.
Peter Omoniyi, Adebayo Adekunle, Segun Ibitoye, Olalekan Olorunpomi, and Olatunji Abolusoro
Elsevier BV
Segun Emmanuel Ibitoye, Rasheedat Modupe Mahamood, Tien-Chien Jen, and Esther Titilayo Akinlabi
Institute of Research and Community Services Diponegoro University (LPPM UNDIP)
The United States Environmental Protection Agency (EPA) has reported that consumption of fossil fuels and their products has contributed about 65% of the global greenhouse gas emission. Therefore, it is expedient to look for alternative energy sources for an eco-friendly environment. The EPA recommended using biomass energy as a promising stabilization option to alleviate global climate change. This study focused on developing composites fuel briquettes from a blend of carbonized corncob and banana stalk. Carbonization was carried out at 380 oC, while 60 min was adopted as the residence time. Briquettes were manufactured at different blending ratios (90CC:10BS, 80CC:20BS, 70CC:30BS, 60CC:40BS and 50CC:50BS of corncob: banana stalk, respectively) and compaction pressures (50, 70 and 90 kPa) using gelatinized starch as binder. The manufactured briquettes' calculated and actual calorific values varied between 18.98-22.07 MJ/kg and 20.22-23.12 MJ/kg, respectively, while shatter indices were in the range of 38.22-89.34%. The compressed and relaxed densities of the fuel briquettes were in the range of 0.32-1.39 g/cm3 and 0.22-1.02 g/cm3, respectively. The relaxation ratio and water resistance properties varied between 1.11- 2.21 and 11-23 min, respectively. Analyses of the results revealed that compaction pressure, blending ratio, and particle size substantially affect the combustion and physico-mechanical characteristics of the manufactured fuel briquettes. When optimum combustion and physico-mechanical properties are required, a sample made from 90CC:10BS (S1) is recommended for use. The fuel briquettes manufactured in this study possess the required thermal and physico-mechanical properties of solid fuel; therefore, it is recommended for different applications.
Olalekan Adebayo Olayemi, Segun Emmanuel Ibitoye, and Adebowale Obalalu
Trans Tech Publications, Ltd.
A study of the heat transport and fluid flow behaviour around a tilted elliptical cylinder that is located concentrically in a square enclosure whose top horizontal wall is driven by a lid in the positive x-direction is presented. Due to the disparities in the results of convective heat transfer in square cavities in the literature, this study seeks to investigate the combined effects of the Grashof number, Aspect ratio of the geometry, and Elliptical cylinder inclination angle on the dynamics of thermal and flow fields within the geometry investigated. COMSOL Multiphysics 5.5 version was used to resolve the non-dimensional transport equations, while simulations were performed to examine the implications of salient parameters such as the elliptical inclination angle , Grashof number and aspect ratio . The simulation outcomes are displayed as average Nusselt numbers, velocity streamlines, and isothermal contours. Findings from this study show that an increase in aspect ratio resulted in increased heat transfer at the elliptical cylinder wall, with the highest rate of heat transfer occurring when .0. Furthermore, the inclination angle increments when Gr= and led to a reduction in the average Nusselt number of the elliptical cylinder wall. At and AR ranges of , the value of the elliptical cylinder wall increased as the ellipse's inclination angle increased. The findings of this study have found use in heat transfer systems, particularly electronic cooling and nuclear technologies.
O. A. Olayemi, A. M. Obalalu, S. E. Ibitoye, A. Salaudeen, M. O. Ibiwoye, B. E. Anyaegbuna, and I. K. Adegun
African Journals Online (AJOL)
The application of fluid and heat transfer in electronic and nuclear technology is gaining popularity, particularly in equipment's life span and risk management. However, further study is required for applications involving rectangular cylinders placed inside a square cavity. This study investigates the effects of height ratio (𝐻𝑅), and width ratio (𝑊𝑅) for Prandtl number 𝑃𝑟=0.71 on natural convective heat transfer and the flow field around the annulus of a square domain fitted internally with a heated rectangular cylinder. The square enclosure and the inner rectangular cylinder walls were respectively maintained at cold and hot isothermal conditions. COMSOL Multiphysics (Version 5.6) software was adopted to implement the governing equations and boundary conditions. The results are presented in the form of streamlines, isothermal contours, and Nusselt number (Nu). The study reveals that the combined average Nu of the rectangular cylinder walls improves with 𝐻𝑅, 𝑊𝑅, and Rayleigh number (Ra). The maximum Nu occurred at 𝐻𝑅=0.7, and 𝑊𝑅=0.7; however, height variation at peak average Nu was 37.7% greater than width variation at peak average Nu. This study finds applications in the cooling of electronic chips and aerospace engines.
Olalekan Adebayo Olayemi, Khaled Al-Farhany, Segun Emmanuel Ibitoye, and Adebowale Martins Obalalu
Trans Tech Publications, Ltd.
This study investigates the implications of the area ratio (AR) and Grashof number (Gr) on fluid flow properties and heat transfer due to mixed convection around heated trapezoidal blocks located concentrically inside a larger trapezium driven by a lid. The outer trapezium's upper and lower horizontal walls are moving in opposite directions. The model developed was solved using the finite element technique. The inner walls of the trapezium are retained at an isothermal temperature, while the slanted outer walls of the trapezium are perfectly insulated. The upper and lower walls of the enclosure are subjected to normalized sinusoidal temperatures. Grashof number in the range of 103£Gr£105 and area ratios ( ) of , and were investigated. The simulation outcomes are displayed as stream function, isothermal contours, and local Nusselt number. Considering the interval of for the inner block, the Nusselt number increase with diminishing area ratio for the upper wall, while the response of the lower wall to Gr variation is a function of the AR considered. At the bottom wall of the outer trapezium, results showed that the rate of heat transfer was not significantly affected by changes in area ratio. Furthermore, as the AR reduces, the heat transmission along the top wall of the outer trapezium improves with the Grashof number, with the least and peak heat transfer enhancements occurring at 50 % and 100 % percent of the wall length, respectively.
S. E. Ibitoye, I. k. Adegun, and Y. Sanni
UiTM Press, Universiti Teknologi MARA
Muffler is a part of an exhaust system fitted to IC engines for damping noise and to convey hot gases from the combustion chamber. Several research efforts have been put into the study of muffler. This is due to their significant effects on noise reduction, fuel consumption, efficiency and life span of engine. Good muffler minimizes noise, back pressure and engine fuel consumption. Currently, the price of petroleum products in the global market is high and very unstable. Therefore, conservation of fuel is very important, particularly to the end user. This study seeks to examine the effects of baffle holes on the fluid flow characteristics and forces on the baffle walls. Three muffler models were designed using Autodesk Investor 2015. ANSYS 16.0 was used as the CFD working tools to predict the flow characteristics and forces on the walls. Samples A, B and C were modeled to have 7, 13 and 26 holes, respectively while the diameter of the holes for samples A, B and C were 50, 37.5 and 25 mm, respectively. Navier-Stokes and energy transport equations govern the three muffler models. Muffler sample A displayed the lowest backpressure of 20.235 Pa, average wall temperature of 986.311 K and best fuel efficiency characteristics. Sample B had the lowest forces on the wall while Muffler C has the least advantage when compared with other models. Muffler sample B gave the optimum design characteristic considering fuel consumption engine efficiency and muffler durability.
I. K. Adegun, S. E. Ibitoye, and A. Bala
Informa UK Limited
ABSTRACT The research is focused on natural convection heat transfer in a concentric square annulus with tilted inner elliptic cylinder subjected to isothermal heating and cooling. Numerical method was adopted for the solution. The governing elliptic conservation equations were solved using Garlerkin Finite Element Method. Ranges of parameters considered for the study were orientation angle, aspect ratio and Rayleigh number. Physical model was generated using CorelDRAW 2019 version while meshing and simulation was done using COMSOL Multiphysics software. Results show that orientation angle had no significant effect on the average Nusselt number at low Rayleigh number. Beyond a critical Rayleigh number, average Nusselt number increases with an increase in orientation angle. Analyses of the results show that Rayleigh number, Nusselt number and orientation angle significantly influence the natural convection in concentric square annulus. The results presented in this study can be applied in heat exchanger devices, solar collectors, nuclear reactors and thermal storage systems.
Segun E. Ibitoye, Tien-Chien Jen, Rasheedat M. Mahamood, and Esther T. Akinlabi
Wiley
Segun E. Ibitoye, Tien-Chien Jen, Rasheedat M. Mahamood, and Esther T. Akinlabi
Springer Science and Business Media LLC
AbstractThe global demand for sustainable energy is increasing due to urbanization, industrialization, population, and developmental growth. Transforming the large quantities of biomass resources such as agro-residues/wastes could raise the energy supply and promote energy mix. Residues of biomass instituted in the rural and industrial centers are enormous, and poor management of these residues results in several indescribable environmental threats. The energy potential of these residues can provide job opportunities and income for nations. The generation and utilization of dissimilar biomass as feedstock for energy production via densification could advance the diversity of energy crops. An increase in renewable and clean energy demand will likely increase the request for biomass residues for renewable energy generation via densification. This will reduce the environmental challenges associated with burning and dumping of these residues in an open field. Densification is the process of compacting particles together through the application of pressure to form solid fuels. Marketable densification is usually carried out using conventional pressure-driven processes such as extrusion, screw press, piston type, hydraulic piston press, roller press, and pallet press (ring and flat die). Based on compaction, densification methods can be categorized into high-pressure, medium-pressure, and low-pressure compactions. The common densification processes are briquetting, pelletizing, bailing, and cubing. They manufacture solid fuel with desirable fuel characteristics—physical, mechanical, chemical, thermal, and combustion characteristics. Fuel briquettes and pellets have numerous advantages and applications both in domestic and industrial settings. However, for biomass to be rationally and efficiently utilized as solid fuel, it must be characterized to determine its fuel properties. Herein, an overview of the densification of biomass residues as a source of sustainable energy is presented.
Segun Emmanuel Ibitoye, Tien-Chien Jen, Rasheedat Modupe Mahamood, and Esther Titilayo Akinlabi
MDPI AG
The overdependence on fossils as the primary energy source has led to climate change, global warming, and the emission of greenhouse gas. As a result, the United Nations, while setting the goals for the year 2030, has made the provision of a green environment and energy one of the top priorities. In this study, the suitability of corncob for green energy production was investigated. The improvement of corncob’s thermal and combustion properties via the torrefaction process was considered for solid fuel applications. The raw corncob was collected, sorted, and dried for seven days before being used for the torrefaction experiment. Different torrefaction temperatures (200, 240, and 260 °C) and residence times (20, 40, 60 min) were studied. There was no particle reduction—samples were torrefied as collected (whole corncob). The results show that torrefaction temperature and residence time affect the torrefaction products yields along with their properties. Thermal and combustion properties were improved with an increase in torrefaction temperature and residence time. The higher heating value and energy density of the torrefied corncob varied between 17.26 and 18.89 MJ/kg, and 3.23 and 5.66 GJ/m3, respectively. High torrefaction temperature and residence time lead to low solid yield; however, liquid and gas yields increase with torrefaction temperature and residence time. The solid yields varied from 27.57 to 52.23%, while the liquid and gas yields varied from 31.56 to 44.78% and 16.21 to 27.65%, respectively. The properties of corncob improve after torrefaction and are suitable for solid fuel application.
S.E. Ibitoye, I.K. Adegun, P.O. Omoniyi, T.S. Ogedengbe, and O.O. Alabi
Elsevier BV
A.S. Adekunle, A.A. Adeleke, C.V. Sam Obu, P.P. Ikubanni, S.E. Ibitoye, and T.M. Azeez
Informa UK Limited
Abstract Recycled plastic wastes polyethylene terephthalate (PET), high-density polyethylene (HDPE) and polypropylene (PP) were studied in the presence of Ethylene glycidyl methacrylate (EGMA) copolymer compatibilizer, as raw materials for producing automobile bumper. These plastic wastes were cleaned and dried, then crushed to < 3 mm in size and further dried for 4 h to remove moisture. Crushed samples were weighed in different proportions with varying amount of compatibilizer (5–15 g) and manually mixed. Recycled composite plastic of 150 × 150 × 3 mm in length, width and thickness, respectively, was produced from weighed samples in an injection moulding machine at 150–220oC and pressure of 150 bar. Mechanical tests and morphological observation were carried out on the blend. The mechanical properties were more dependent on EGMA in the blend produced than the variation of the PET, PE and PP. The results showed that the optimum tensile strength (25.48 N/mm2), elongation at break (40.75%), Young’s modulus (1615.96 N/mm2) and impact strength (179 J/m) were obtained when 10 g of EGMA was used with 164: 18:18 g of PET, PEL and PP, respectively. The morphology of the sample examined showed the presence of discrete particles with cracks, cavities and various separations, and they defined the mechanical behaviour of the samples. Compared to some standard materials used to produce car bumper, the recycled blend in this study showed huge potential for its production and thus, the use can help in reducing environmental pollution caused by plastic waste.
H. A. Ajimotokan, S. E. Ibitoye, J. K. Odusote, O. A. Adesoye, and P. O. Omoniyi
IOP Publishing
Abstract Densification of agricultural residues such as husks, shells and cobs into fuel briquettes is an alternative renewable feedstock for producing solid fuels because it improves their physico-mechanical, storage and combustion properties. This paper presents the physico-mechanical characterisation of fuel briquettes made from blends of corncob and rice husk. The raw samples of corncob and rice husk were collected, sorted and pulverised. The pulverised samples were screened to 0.25, 1.0 and 1.75 mm particle sizes, blended at mixing ratios of 80:20, 70:30, 60:40, and 50:50, and afterwards, briquette samples were produced at 25, 50, and 65 kPa compaction pressures respectively with starch as the binder. The variations in the particle size, mixing ratio and compaction pressure have significantly influenced the investigated physico-mechanical properties of the produced briquettes. The briquette made from 80:20 mixing ratio of corncob to rice husk, 0.25 mm particle size and 65 kPa compaction pressure had the highest compressive strength of 111 kN/m2 and the least compressive strength of 39 kN/m2 from briquette with 50:50 ratio of corncob to rice husk, 1.75 mm particle size and 25 kPa compaction pressure. The briquette made from 50:50 mixing ratio of corncob to rice husk, 0.25 mm particle size and 65 kPa compaction pressure spent the longest time to collapse when immersed in water; taking up to 972 seconds and the least time of 480 seconds from briquette with 80:20 mixing ratio corncob to rice husk, 1.75 mm particle size and 25 kPa compaction pressure.