Dose-dependent effects of curcumin on 22Rv1 prostate cancer cell line Giovanni Tossetta, Sonia Fantone, Elena Marinelli Busilacchi, Daniela Marzioni, and Roberta Mazzucchelli Springer Science and Business Media LLC Abstract Background Prostate cancer (PCa) is the second most frequent cancer type in the male population over 66 years. Curcumin is a polyphenolic natural compound extract from the rhizomes of Curcuma longa Linn (Zingiberaceae family) which showed important anticancer effects by inhibiting cell proliferation and inducing apoptosis in several cancer types. Recently, some studies reported that oral curcumin lowered PSA levels, but it did not modify the clinical outcomes in patients with prostate cancer who received intermittent androgen deprivation (IAD). Other studies reported that high concentrations of curcumin were toxic for patients. Methods and results In this study we showed that low doses of curcumin can induce senescence-like effects in 22Rv1 cell line while higher concentrations have cytotoxic effects. Five,15 and 30 µM curcumin blocked cell cycle in G2/M phase but only 15 and 30 µM curcumin induced cell death. In addition, an increased expression of p21, a known senescence marker, was detected in 22Rv1 cells treated with curcumin in every experimental condition. However, the expression of p16, another known senescence marker, increased only to 30 µM curcumin. Conclusion In the context of personalized approach in PCa care, we suggest that the appropriate concentration of curcumin used in combination with radiotherapy or with androgen deprivation therapy (ADT) could be taken into consideration.
Importance of STAT3 signaling in preeclampsia (Review) Daniela Marzioni, Federica Piani, Nicoletta Di Simone, Stefano Giannubilo, Andrea Ciavattini, and Giovanni Tossetta Spandidos Publications Placentation is a key process that is tightly regulated that ensures the normal placenta and fetal development. Preeclampsia (PE) is a hypertensive pregnancy-associated disorder characterized by increased oxidative stress and inflammation. STAT3 signaling plays a key role in modulating important processes such as cell proliferation, differentiation, invasion and apoptosis. The present review aimed to analyse the role of STAT3 signaling in PE pregnancies, discuss the main natural and synthetic compounds involved in modulation of this signaling both in vivo and in vitro and summarize the main cellular modulators of this signaling to identify possible therapeutic targets and treatments to improve the outcome of PE pregnancies.
Epigenetic Properties of Compounds Contained in Functional Foods Against Cancer Giulia Casari, Brenda Romaldi, Andrea Scirè, Cristina Minnelli, Daniela Marzioni, Gianna Ferretti, and Tatiana Armeni MDPI AG Epigenetics encompasses reversible and heritable genomic changes in histones, DNA expression, and non-coding RNAs that occur without modifying the nucleotide DNA sequence. These changes play a critical role in modulating cell function in both healthy and pathological conditions. Dysregulated epigenetic mechanisms are implicated in various diseases, including cardiovascular disorders, neurodegenerative diseases, obesity, and mainly cancer. Therefore, to develop innovative therapeutic strategies, research for compounds able to modulate the complex epigenetic landscape of cancer is rapidly surging. Dietary phytochemicals, mostly flavonoids but also tetraterpenoids, organosulfur compounds, and isothiocyanates, represent biologically active molecules found in vegetables, fruits, medicinal plants, and beverages. These natural organic compounds exhibit epigenetic modulatory properties by influencing the activity of epigenetics key enzymes, such as DNA methyltransferases, histone acetyltransferases and deacetylases, and histone methyltransferases and demethylases. Due to the reversibility of the modifications that they induce, their minimal adverse effects, and their potent epigenetic regulatory activity, dietary phytochemicals hold significant promise as antitumor agents and warrant further investigation. This review aims to consolidate current data on the diverse epigenetic effects of the six major flavonoid subclasses, as well as other natural compounds, in the context of cancer. The goal is to identify new therapeutic epigenetic targets for drug development, whether as stand-alone treatments or in combination with conventional antitumor approaches.
Modulation of NRF2/KEAP1 Signaling by Phytotherapeutics in Periodontitis Giovanni Tossetta, Sonia Fantone, Lucrezia Togni, Andrea Santarelli, Fabiola Olivieri, Daniela Marzioni, and Maria Rita Rippo MDPI AG Periodontitis affects up to 40% of adults over 60 years old and is a consequence of gingivitis. Periodontitis is characterized by a chronic inflammation, periodontal damage, and alveolar bone resorption. The nuclear factor erythroid 2-related factor 2 (NFE2L2 or NRF2)/Kelch-like ECH-Associated Protein 1 (KEAP1) (NRF2/KEAP1) signaling pathway plays a key role in periodontitis by modulating redox balance and inflammation of the periodontium. However, NRF2 expression is decreased in gingival tissues of patients with periodontitis while oxidative stress is significantly increased in this pathology. Oxidative stress and lipopolysaccharide (LPS) produced by gram-negative bacteria favor the production of inflammatory causing periodontal inflammation and favoring alveolar bone. In this review, we analyzed the current literature regarding the role of natural and synthetic compounds in modulating the NRF2/KEAP1 pathway in in vitro and in vivo models of periodontitis in order to evaluate new potential treatments of periodontitis that can improve the outcome of this disease.
First Trimester Placental Biomarkers for Pregnancy Outcomes Martina Cristodoro, Martina Messa, Giovanni Tossetta, Daniela Marzioni, Marinella Dell’Avanzo, Annalisa Inversetti, and Nicoletta Di Simone MDPI AG The placenta plays a key role in several adverse obstetrical outcomes, such as preeclampsia, intrauterine growth restriction and gestational diabetes mellitus. The early identification of at-risk pregnancies could significantly improve the management, therapy and prognosis of these pregnancies, especially if these at-risk pregnancies are identified in the first trimester. The aim of this review was to summarize the possible biomarkers that can be used to diagnose early placental dysfunction and, consequently, at-risk pregnancies. We divided the biomarkers into proteins and non-proteins. Among the protein biomarkers, some are already used in clinical practice, such as the sFLT1/PLGF ratio or PAPP-A; others are not yet validated, such as HTRA1, Gal-3 and CD93. In the literature, many studies analyzed the role of several protein biomarkers, but their results are contrasting. On the other hand, some non-protein biomarkers, such as miR-125b, miR-518b and miR-628-3p, seem to be linked to an increased risk of complicated pregnancy. Thus, a first trimester heterogeneous biomarkers panel containing protein and non-protein biomarkers may be more appropriate to identify and discriminate several complications that can affect pregnancies.
The “Bad Father”: Paternal Role in Biology of Pregnancy and in Birth Outcome Stefano Raffaele Giannubilo, Daniela Marzioni, Giovanni Tossetta, Ramona Montironi, Maria Liberata Meccariello, and Andrea Ciavattini MDPI AG Pregnancy is generally studied as a biological interaction between a mother and a fetus; however, the father, with his characteristics, lifestyle, genetics, and living environment, is by no means unrelated to the outcome of pregnancy. The half of the fetal genetic heritage of paternal derivation can be decisive in cases of inherited chromosomal disorders, and can be the result of de novo genetic alterations. In addition to the strictly pathological aspects, paternal genetics may transmit thrombophilic traits that affect the implantation and vascular construction of the feto-placental unit, lead to placenta-mediated diseases such as pre-eclampsia and fetal growth retardation, and contribute to the multifactorial genesis of preterm delivery. Biological aspects of immunological tolerance to paternal antigens also appear to be crucial for these pathologies. Finally, this review describes the biological findings by which the environment, exposure to pathogens, lifestyle, and nutritional style of the father affect fetal pathophysiological and epigenetic definition.
HELLP Syndrome and Differential Diagnosis with Other Thrombotic Microangiopathies in Pregnancy Stefano Raffaele Giannubilo, Daniela Marzioni, Giovanni Tossetta, and Andrea Ciavattini MDPI AG Thrombotic microangiopathies (TMAs) comprise a distinct group of diseases with different manifestations that can occur in both pediatric and adult patients. They can be hereditary or acquired, with subtle onset or a rapidly progressive course, and they are particularly known for their morbidity and mortality. Pregnancy is a high-risk time for the development of several types of thrombotic microangiopathies. The three major syndromes are hemolysis, elevated liver function tests, and low platelets (HELLP); hemolytic uremic syndrome (HUS); and thrombotic thrombocytopenic purpura (TTP). Because of their rarity, clinical information and therapeutic results related to these conditions are often obtained from case reports, small series, registries, and reviews. The collection of individual observations, the evolution of diagnostic laboratories that have identified autoimmune and/or genetic abnormalities using von Willebrand factor post-secretion processing or genetic–functional alterations in the regulation of alternative complement pathways in some of these TMAs, and, most importantly, the introduction of advanced treatments, have enabled the preservation of affected organs and improved survival rates. Although TMAs may show different etiopathogenesis routes, they all show the presence of pathological lesions, which are characterized by endothelial damage and the formation of thrombi rich in platelets at the microvascular level, as a common denominator, and thrombotic damage to microcirculation pathways induces “mechanical” (microangiopathic) hemolytic anemia, the consumption of platelets, and ischemic organ damage. In this review, we highlight the current knowledge about the diagnosis and management of these complications during pregnancy.
Circulating miRNAs and Preeclampsia: From Implantation to Epigenetics † Stefano Raffaele Giannubilo, Monia Cecati, Daniela Marzioni, and Andrea Ciavattini MDPI AG In this review, we comprehensively present the literature on circulating microRNAs (miRNAs) associated with preeclampsia, a pregnancy-specific disease considered the primary reason for maternal and fetal mortality and morbidity. miRNAs are single-stranded non-coding RNAs, 20–24 nt long, which control mRNA expression. Changes in miRNA expression can induce a variation in the relative mRNA level and influence cellular homeostasis, and the strong presence of miRNAs in all body fluids has made them useful biomarkers of several diseases. Preeclampsia is a multifactorial disease, but the etiopathogenesis remains unclear. The functions of trophoblasts, including differentiation, proliferation, migration, invasion and apoptosis, are essential for a successful pregnancy. During the early stages of placental development, trophoblasts are strictly regulated by several molecular pathways; however, an imbalance in these molecular pathways can lead to severe placental lesions and pregnancy complications. We then discuss the role of miRNAs in trophoblast invasion and in the pathogenesis, diagnosis and prediction of preeclampsia. We also discuss the potential role of miRNAs from an epigenetic perspective with possible future therapeutic implications.
Role of SLC7A11/xCT in Ovarian Cancer Sonia Fantone, Federica Piani, Fabiola Olivieri, Maria Rita Rippo, Angelo Sirico, Nicoletta Di Simone, Daniela Marzioni, and Giovanni Tossetta MDPI AG Ovarian cancer is one of the most dangerous gynecologic cancers worldwide and has a high fatality rate due to diagnosis at an advanced stage of the disease as well as a high recurrence rate due to the occurrence of chemotherapy resistance. In fact, chemoresistance weakens the therapeutic effects, worsening the outcome of this pathology. Solute Carrier Family 7 Member 11 (SLC7A11, also known as xCT) is the functional subunit of the Xc− system, an anionic L-cystine/L-glutamate antiporter expressed on the cell surface. SLC7A11 expression is significantly upregulated in several types of cancers in which it can inhibit ferroptosis and favor cancer cell proliferation, invasion and chemoresistance. SLC7A11 expression is also increased in ovarian cancer tissues, suggesting a possible role of this protein as a therapeutic target. In this review, we provide an overview of the current literature regarding the role of SLC7A11 in ovarian cancer to provide new insights on SLC7A11 modulation and evaluate the potential role of SLC7A11 as a therapeutic target.
Melanoma and subcutaneous adipose tissue: Role of peritumoral adipokines in disease characterization and prognosis Elisa Molinelli, Gabriele Ceccarelli, Sonia Fantone, Eleonora Di Mercurio, Daisy Gambini, Andrea Maurizi, Jessica Perugini, Giovanni Tossetta, Valerio Brisigotti, Edoardo De Simoni,et al. Wiley In the last decades, the concept of adipose organ has emerged, giving adipose tissue an active endocrine and immunologic function through the secretion of multiple cytokines and chemokines that seem to be implicated in the development and progression of several cancer, including cutaneous melanoma. In this pilot experimental study, we analyzed the expression in the peritumor subcutaneous adipose tissue of the most significant adipokines involved in the processes of carcinogenesis and metastasis in a population of melanoma patients and in two control groups composed of melanocytic nevi and epidermoid cysts, respectively. We correlated the results obtained with the main disease prognostic factors observing a statistically significant increase in the expression of PAI1, LEP, CXCL1, NAMPT, and TNF-α at the level of the peritumor tissue of the melanoma samples compared to the control groups and a correlation of the same with the histopathological prognostic factor of melanoma. Our preliminary study shows that the overexpression of PAI1, LEP, CXCL1, NAMPT, and TNF-α may contribute to the growth and to the local aggressiveness of cutaneous melanoma. It opens the hypothesis of a direct oncogenic role of subcutaneous adipose tissue and adipokines in the tumorigenesis of melanoma.
Cellular Modulators of the NRF2/KEAP1 Signaling Pathway in Prostate Cancer Giovanni Tossetta, Sonia Fantone, Daniela Marzioni, and Roberta Mazzucchelli IMR Press Prostate cancer is the second most common malignancy in men worldwide. Prostate cancer can be treated by surgery, radiotherapy and hormone therapy. The latter, in the form of androgen-deprivation therapy is needed to reduce prostate cancer progression at an advanced stage. Several studies demonstrated that oxidative stress is involved in cancer occurrence, development and progression and the Nuclear factor erythroid 2-related factor 2 (NRF2)/Kelch Like ECH Associated Protein 1 (KEAP1) pathway is affected by reactive oxygen species (ROS). Furthermore, the NRF2/KEAP1 signaling pathway has been investigated by several studies related to anti-androgen therapy, biochemical recurrence and radiotherapy. In this review we analysed the current literature regarding the indirect modulators involved in NRF2/KEAP1 pathway regulation and their role as possible therapeutic targets in prostate cancer cells.
Role of CD93 in Health and Disease Giovanni Tossetta, Federica Piani, Claudio Borghi, and Daniela Marzioni MDPI AG CD93 (also known as complement protein 1 q subcomponent receptor C1qR1 or C1qRp), is a transmembrane glycoprotein encoded by a gene located on 20p11.21 and composed of 652 amino acids. CD93 can be present in two forms: soluble (sCD93) and membrane-bound (CD93). CD93 is mainly expressed on endothelial cells, where it plays a key role in promoting angiogenesis both in physiology and disease, such as age-related macular degeneration and tumor angiogenesis. In fact, CD93 is highly expressed in tumor-associated vessels and its presence correlates with a poor prognosis, poor immunotherapy response, immune cell infiltration and high tumor, node and metastasis (TNM) stage in many cancer types. CD93 is also expressed in hematopoietic stem cells, cytotrophoblast cells, platelets and many immune cells, i.e., monocytes, neutrophils, B cells and natural killer (NK) cells. Accordingly, CD93 is involved in modulating important inflammatory-associated diseases including systemic sclerosis and neuroinflammation. Finally, CD93 plays a role in cardiovascular disease development and progression. In this article, we reviewed the current literature regarding the role of CD93 in modulating angiogenesis, inflammation and tumor growth in order to understand where this glycoprotein could be a potential therapeutic target and could modify the outcome of the abovementioned pathologies.
Diagnostic and Prognostic Role of CD93 in Cardiovascular Disease: A Systematic Review Federica Piani, Giovanni Tossetta, Gabriel Cara-Fuentes, Davide Agnoletti, Daniela Marzioni, and Claudio Borghi MDPI AG Introduction. Cluster of Differentiation (CD) 93 (also known as complement protein 1 q subcomponent receptor C1qR1 or C1qRp) is a transmembrane glycoprotein that can also be present in a soluble (sCD93) form. Recent studies have investigated the role of this protein in cardiovascular disease (CVD). The present systematic review aims to assess the associations between CD93 and cardiovascular (CV) risk factors and disease at both the proteomic and genomic levels. Methods. We conducted systematic searches in the PubMed, EMBASE, and Web of Science databases to identify all human studies since inception to February 2023 that investigated the role of CD93 in CV risk factors, CVD, and CV-associated outcomes. The data collection and analysis have been independently conducted by two reviewers. The search terms included: cardiovascular, heart failure, acute stroke, myocardial infarction, stroke, peripheral artery disease, cardiovascular death, MACE, hypertension, metabolic syndrome, hyperuricemia, diabetes, cd93, c1qr, C1qR1, complement protein 1 q subcomponent receptor. Results. A total of 182 references were identified, and 15 studies investigating the associations between CD93 protein levels or CD93 genetic polymorphisms and the development or prevalence of CV risk factors (i.e., hypertension, dyslipidemia, and obesity) and CVD (i.e., heart failure, coronary artery disease, and ischemic stroke) were included. Although promising, the quality and dimension of the analyzed studies do not allow for a definitive answer to the question of whether CD93 may hold diagnostic and prognostic value in CVD.
Modulation of NRF2/KEAP1 Signaling in Preeclampsia Giovanni Tossetta, Sonia Fantone, Federica Piani, Caterina Crescimanno, Andrea Ciavattini, Stefano Raffaele Giannubilo, and Daniela Marzioni MDPI AG Placentation is a key and tightly regulated process that ensures the normal development of the placenta and fetal growth. Preeclampsia (PE) is a hypertensive pregnancy-related disorder involving about 5–8% of all pregnancies and clinically characterized by de novo maternal hypertension and proteinuria. In addition, PE pregnancies are also characterized by increased oxidative stress and inflammation. The NRF2/KEAP1 signaling pathway plays an important role in protecting cells against oxidative damage due to increased reactive oxygen species (ROS) levels. ROS activate NRF2, allowing its binding to the antioxidant response element (ARE) region present in the promoter of several antioxidant genes such as heme oxygenase, catalase, glutathione peroxidase and superoxide dismutase that neutralize ROS, protecting cells against oxidative stress damages. In this review, we analyze the current literature regarding the role of the NRF2/KEAP1 pathway in preeclamptic pregnancies, discussing the main cellular modulators of this pathway. Moreover, we also discuss the main natural and synthetic compounds that can regulate this pathway in in vivo and in vitro models.
Role of Natural and Synthetic Compounds in Modulating NRF2/KEAP1 Signaling Pathway in Prostate Cancer Giovanni Tossetta, Sonia Fantone, Daniela Marzioni, and Roberta Mazzucchelli MDPI AG Prostate cancer is the second most common cancer in men worldwide. Prostate cancer can be treated by surgery or active surveillance when early diagnosed but, when diagnosed at an advanced or metastatic stage, radiation therapy or androgen-deprivation therapy is needed to reduce cancer progression. However, both of these therapies can cause prostate cancer resistance to treatment. Several studies demonstrated that oxidative stress is involved in cancer occurrence, development, progression and treatment resistance. The nuclear factor erythroid 2-related factor 2 (NRF2)/KEAP1 (Kelch-Like ECH-Associated Protein 1) pathway plays an important role in protecting cells against oxidative damage. Reactive oxygen species (ROS) levels and NRF2 activation can determine cell fate. In particular, toxic levels of ROS lead physiological cell death and cell tumor suppression, while lower ROS levels are associated with carcinogenesis and cancer progression. On the contrary, a high level of NRF2 promotes cell survival related to cancer progression activating an adaptive antioxidant response. In this review, we analyzed the current literature regarding the role of natural and synthetic compounds in modulating NRF2/KEAP1 signaling pathway in prostate cancer.
ZO-1 expression in normal human macula densa: Immunohistochemical and immunofluorescence investigations Giovanni Tossetta, Sonia Fantone, Martina Senzacqua, Andrea Benedetto Galosi, Daniela Marzioni, and Manrico Morroni Wiley AbstractThe macula densa (MD) is an anatomical structure having a plaque shape, placed in the distal end of thick ascending limb of each nephron and belonging to juxtaglomerular apparatus (JGA). The aim of the present investigation is to investigate the presence of ZO‐1, a specific marker of tight juncions (TJs), in MD cells. Six samples of normal human renal tissue were embedded in paraffin for ZO‐1 expression analysis by immunohistochemical and immunofluorescence techniques. We detected ZO‐1 expression in the apical part of cell membrane in MD cells by immunohistochemistry. In addition, ZO‐1 and nNOS expressions (a specific marker of MD) were colocalized in MD cells providing clear evidence of TJs presence in normal human MD. Since ZO‐1 is responsible for diffusion barrier formation, its presence in the MD supports the existence of a tubulomesangial barrier that ensures a regulated exchange between MD and JGA effectors in renal and glomerular haemodynamic homeostasis.
HTRA1 in Placental Cell Models: A Possible Role in Preeclampsia Giovanni Tossetta, Sonia Fantone, Stefano Raffaele Giannubilo, Andrea Ciavattini, Martina Senzacqua, Andrea Frontini, and Daniela Marzioni MDPI AG The HtrA serine peptidase 1 (HTRA1) is a multidomain secretory protein with serine–protease activity involved in the regulation of many cellular processes in both physiological and pathological conditions. HTRA1 is normally expressed in the human placenta, and its expression is higher in the first trimester compared to the third trimester, suggesting an important role of this serine protease in the early phases of human placenta development. The aim of this study was to evaluate the functional role of HTRA1 in in vitro models of human placenta in order to define the role of this serine protease in preeclampsia (PE). BeWo and HTR8/SVneo cells expressing HTRA1 were used as syncytiotrophoblast and cytotrophoblast models, respectively. Oxidative stress was induced by treating BeWo and HTR8/SVneo cells with H2O2 to mimic PE conditions in order to evaluate its effect on HTRA1 expression. In addition, HTRA1 overexpression and silencing experiments were performed to evaluate the effects on syncytialization, cell mobility, and invasion processes. Our main data showed that oxidative stress significantly increased HTRA1 expression in both BeWo and HTR8/SVneo cells. In addition, we demonstrated that HTRA1 has a pivotal role in cell motility and invasion processes. In particular, HTRA1 overexpression increased while HTRA1 silencing decreased cell motility and invasion in HTR8/SVneo cell model. In conclusion, our results suggest an important role of HTRA1 in regulating extravillous cytotrophoblast invasion and motility during the early stage of placentation in the first trimester of gestation, suggesting a key role of this serine protease in PE onset.
The Role of NQO1 in Ovarian Cancer Giovanni Tossetta, Sonia Fantone, Gaia Goteri, Stefano Raffaele Giannubilo, Andrea Ciavattini, and Daniela Marzioni MDPI AG Ovarian cancer is one of the most dangerous gynecologic malignancies showing a high fatality rate because of late diagnosis and relapse occurrence due to chemoresistance onset. Several researchers reported that oxidative stress plays a key role in ovarian cancer occurrence, growth and development. The NAD(P)H:quinone oxidoreductase 1 (NQO1) is an antioxidant enzyme that, using NADH or NADPH as substrates to reduce quinones to hydroquinones, avoids the formation of the highly reactive semiquinones, then protecting cells against oxidative stress. In this review, we report evidence from the literature describing the effect of NQO1 on ovarian cancer onset and progression.