Nidal Hadadin

Verified email at

university of Jordan



• Hydraulics
• Environmental Hydrology and Water Resources
• Erosion and Sediment Transport
• Fluvial Geomorphology
• Surface and Ground Water Modeling


Scopus Publications

Scopus Publications

  • Estimation of the sediment yield using hydrological assessment tool model: a case of Wadi Al-Arab Dam at the northern part of Jordan
    Nidal Adeeb Hadadin and Sania Ratib Al-Adwan

    Arabian Journal of Geosciences, ISSN: 18667511, eISSN: 18667538, Published: 1 May 2020 Springer Science and Business Media LLC
    Sedimentation represents a serious threat to the dam and reduces its useable water storage and its life span. Due to erosion and sedimentation problems, a dam gradually loses its ability to store water for the purposes for which it was built. The Soil and Water Assessment Tool model (SWAT) was utilized to estimate the sediment yield in Wadi Al-Arab dam at the northern part of Jordan. In this research, two sediment transport relationships were developed: one for the sediment yield as a function of surface runoff and another for the sediment yield as a function of the slope, area of the watershed, and water discharge by using a statistical regression analysis on a set of hydraulic variables. The results showed that the reservoir storage is reduced with an annual rate of 0.093 MCM, and the accumulated sediment occupies 15% of the total storage capacity during a period of 32 years. The model also identified the location of high sediment yield within the study area, which is located at the western part of the watershed. The result of this study was compared with those of other investigators and with the actual sediment data. The difference in sediment yield between this study and actual sediment deposition was about 7%. Based on the results, it was found that SWAT model could be used to predict catchment soil erosion in watershed and sediment yield trapped behind similar dams.

  • Variation in hydraulic geometry for stable versus incised streams in the Yazoo River basin – USA
    Nidal Hadadin

    International Journal of Sediment Research, ISSN: 10016279, Pages: 121-126, Published: 1 March 2017 Elsevier BV
    Abstract The effects of basin hydrology on hydraulic geometry of channels variability for incised streams were investigated using available field data sets and models of watershed hydrology and channel hydraulics for the Yazoo River basin, USA. The study presents the hydraulic geometry relations of bankfull discharge, channel width, mean depth, cross-sectional area, longitudinal slope, unit stream power, and mean velocity at bankfull discharge as a function of drainage area using simple linear regression. The hydraulic geometry relations were developed for 61 streams, 20 of them are classified as channel evolution model (CEM) Types IV and V and 41 of them are CEM streams Types II and III. These relationships are invaluable to hydraulic and water resources engineers, hydrologists, and geomorphologists involved in stream restoration and protection. These relations can be used to assist in field identification of bankfull stage and stream dimension in un-gauged watersheds as well as estimation of the comparative stability of a stream channel. A set of hydraulic geometry relations are presented in this study, these empirical relations describe physical correlations for stable and incised channels. Cross-sectional area, which combines the effects of channel width and mean channel depth, was found to be highly responsive to changes in drainage area and bankfull discharge. Analyses of cross-sectional area, channel width, mean channel depth, and mean velocity in conjunction with changes in drainage area and bankfull discharge indicated that the channel width is much more responsive to changes in both drainage area and bankfull discharge than are mean channel depth or mean velocity.

  • Modeling of rainfall-runoff relationship in semi-arid watershed in the central region of Jordan
    Nidal Hadadin and

    Jordan Journal of Civil Engineering, ISSN: 19930461, eISSN: 2225157X, Pages: 209-218, Published: 2016 Jordan Journal of Civil Engineering
    As a result of quick progression in computer and information technologies, computer modeling has become a vital tool in watershed research and management practices. Stanford Watershed Model (SWM) is an integrated physically based Watershed model that can be used to simulate water flow stream/canal network and overland runoff, interflow and evaporation by considering the interaction between surface water and subsurface water. The objective of this study is to apply the SWM in order to estimate the rainfall-runoff relationship for Wadi Wala streamflow semi arid area with an average annual rainfall of about 300 mm/yr and a catchment area of 1800 km. SWM has been widely accepted as a tool to synthesize a continuous hydrograph of hourly or daily streamflow. Sensitivity analysis, as well as trial and error adjustment techniques were used for the optimization of the number of parameters of the model. Comparing estimated and measured surface runoff for Wala valley indicated that the model is considerably efficient in predicting the total annual surface runoff from rainfall for similar watersheds.

  • Rainwater harvesting in Jordan: a case of Royal Pavilion at Amman Airport
    Nidal Hadadin, Khaldoun Shatanawi, and Radwan Al-Weshah

    Desalination and Water Treatment, ISSN: 19443994, eISSN: 19443986, Issue: 31-33, Pages: 6058-6068, Published: september 2014 Informa UK Limited
    Volumes of rainwater harvested on-site are estimated by short-term storage capacity by two methods: graphical method and analytical method. The first method considers the difference between demand and supply over a specified period of time. The second uses random events to determine analytically, the storage capacity required to guarantee the draft. The comparison between the two methods indicates that there are minor differences. Based on the volume of water harvested after applying these methods, run-off coefficient for impervious surface in arid and semi-arid area was estimated. New analytical approach for long-term storage capacity is utilized to estimate the detention pond capacity off-site for the local natural streams. To apply this method, it is necessary to estimate the overall mean storage capacity in which the soil conservation service method is utilized. This technique is confirmed with graphical method.

  • Erratum: Rainwater harvesting in Jordan: a case of Royal Pavilion at Amman Airport [Desalination and Water Treatment, DOI 10.1080/19443994.2013.817506]
    Nidal Hadadin, Khaldoun Shatanawi, and Radwan Al-Weshah

    Desalination and Water Treatment, ISSN: 19443994, eISSN: 19443986, Issue: 31-33, Published: september 2014 Informa UK Limited

  • Evaluation of several techniques for estimating stormwater runoff in arid watersheds
    Nidal Hadadin

    Environmental Earth Sciences, ISSN: 18666280, eISSN: 18666299, Pages: 1773-1782, Published: July 2013 Springer Science and Business Media LLC
    Several traditional techniques have been used for estimating storm-water runoff from ungauged watersheds. Some of these techniques were applied to watersheds of Rashadia in south-eastern desert of Jordan. When engineers apply rainfall-runoff models for hydrologic design, there are difficulties in defining and quantifying peak discharges that are required to design different types of hydraulic structures. The lack of data presents major difficulties for rainfall-runoff modeling in arid regions. These regions have characteristically high rainfall intensity and consequent flash floods. The specific objectives of this study are: (1) apply synthetic hydrographs for estimating peak discharges from limited hydrological data. (2) Evaluate the reliability of six techniques to accurately estimate storm-water runoff; and, to evaluate the runoff that is required to design hydraulic structures such as bridges, culverts and dams. (3) Estimate the flood resulting from direct runoff after subtracting all the loses such as: the infiltration, interflow and evaporation. (4) Develop a simple regression relationship between peak flow discharges and catchment areas. The results show that there is uncertainty in determining the accuracy of storm-water volume, this is due to several methods were utilizing the estimation the hydrographs base time, but promising results in predicting the peak flow discharge.

  • Hydrological Analysis for Floodplain Hazard of Jeddah's Drainage Basin, Saudi Arabia
    Nidal Hadadin, Zeyad Tarawneh, Khaldoun Shatanawi, Qais Banihani, and Moshrik R. Hamdi

    Arabian Journal for Science and Engineering, ISSN: 2193567X, eISSN: 21914281, Pages: 3275-3287, Published: December 2013 Springer Science and Business Media LLC
    All streams and rivers naturally overflow periodically. In the study area, flooding is a result of rainfall exceeding the absorptive capacity of soil and the flow capacity of waterways. In November, 2009, more than 90 mm of rain fell in Jeddah during just 4 h; this was nearly twice the average rainfall for an entire year and the heaviest rainfall in Saudi Arabia in a decade. Synthetic unit hydrograph theory is utilized in the hydrologic analysis in order to determine the peak flow discharge that hit Jeddah city. Flood hydrograph determination is essential for the assessment of water resource potential and for the design of various hydraulic structures. Unit hydrographs were derived for twelve main wadies in the Jeddah basin and the peak flow discharge was estimated by utilizing two models: routing unit hydrograph and Snyder unit hydrograph. Regression relationships as a simple power function between drainage area, number of the channels in the catchment, their total length, and the flow discharge were developed. In addition, the relationships between drainage density, drainage frequency, and infiltration capacity were founded. The results were discussed and compared with those derived and developed by other investigators. The relations between these variables were found to be so strong, that it was possible to estimate peak runoff for ungauged drainage basins.

  • Spatial hydrological analysis for water harvesting potential using ArcGIS model: The case of the north-eastern desert, Jordan
    Nidal Hadadin, Sari Shawash, Zeyad Tarawneh, Qais Banihani, and Moshrik R. Hamdi

    Water Policy, ISSN: 13667017, Pages: 524-538, Published: 2012 IWA Publishing
    Jordan is located in an arid to semi-arid zone where water resources are limited. The threat of water shortages is already a reality and Jordan is struggling to face the scarcity of water. The north-eastern Badia semi-desert (zone) of the Kingdom is a large area with a small population. Constructing a dam can boost the local economy by supplying the water necessary for a community to meet its irrigation needs and develop the study area. In this study, ArcGIS software using a digital elevation model (DEM) map was utilized to determine possible sites where rainwater can be collected in north-eastern Badia. Possible watersheds were delineated using drainage networks. Seven sub-watersheds were characterized hydrologically by developing unit hydrographs, and water volume capacity was computed. Moreover, possible sites for earthen dams or tanks for water harvesting systems were investigated in different areas of Jordan. Rainwater harvesting could make water available during dry periods and its capture can also reduce soil erosion from runoff during wet periods.

  • Theoretical and analytical approaches for investigating the relations between sediment transport and channel shape
    World Academy of Science, Engineering and Technology, ISSN: 2010376X, eISSN: 20103778, Pages: 156-161, Published: December 2010

  • Water shortage in Jordan - Sustainable solutions
    Nidal Hadadin, Maher Qaqish, Emad Akawwi, and Ahmed Bdour

    Desalination, ISSN: 00119164, Volume: 250, Pages: 197-202, Published: 1 January 2010 Elsevier BV
    Abstract The large environmental challenge that Jordan faces today is the scarcity of water. Definitely, water is the significant feature in the population/resource equation where water resources in Jordan are limited and the country's population has continued to rise. A high rate of natural population growth, combined with massive influxes of refugees, has transformed into an imbalance condition between population and water. Jordan's water resources are limited to support population in a sustainable manner. The situation has been intensified by the fact that Jordan shares most of its surface water resources with neighboring countries; their control on water has partially disallowed Jordan of its fair share of water. Current use of water already exceeds its renewable supply. The deficit is covered by the unsustainable practice of overdrawing highland aquifers, resulting in lowered water tables and declining water quality. This paper focuses on the water shortage in Jordan, the primarily evaluation of this problem and the solution is contemplate. A true foundation of sustainable water solution requires awareness upon the part of the population, and a number of governmental and non-governmental organizations are actively involved in educating the populace about water shortage. The more essential and “doable” elements of a sustainable water solutions were discussed in this research, these elements are standing under, the development of new supplies of water, water harvesting, desalination, reuse of wastewater in the agricultural sector and reduction of water demands. Moreover, this article presents specific recommendations addressing water resource shortage in the kingdom and highlighting the importance of conservation of water and discussing the basics of sustainable solution.

  • The geological model and the groundwater aspects of the area surrounding the eastern shores of the Dea Sea (DS) - Jordan
    WSEAS Transactions on Information Science and Applications, ISSN: 17900832, Pages: 670-683, Published: 2009

  • Reconstruction of the rainy season precipitation in central Jordan

    Hydrological Sciences Journal, ISSN: 02626667, Pages: 189-198, Published: 2009 Informa UK Limited
    Abstract Concurrent reconstructions of October—April precipitation at Madaba and Rabba gauging sites in central Jordan back to the year 1777 using a multivariate regression model are presented. The reconstruction model was calibrated using concurrent precipitation and tree-ring data for the period 1953–1981 The regression equation is significant (p < 0.05), while reconstructions account for 53% and 48% (adjusted for lost degrees of freedom) of the total variability of the precipitation at the Madaba and Rabba sites, respectively. The validation statistic obtained indicates the existence of worthwhile information in the reconstructions. A threshold of 1 standard deviation below the mean is used to define extremely dry years. The concurrent analysis of the reconstructed precipitation at both sites indicates the occurrence of 24 regional extremely dry periods of between 1 and 2 years' duration. Dry periods of more than 2 years' duration rarely occur. This study indicates the occurrence of noticeable extremely dry individual years: 1800, 1827, 1895 and 1933. The estimated mean recurrence times of extreme droughts are 9.3 and 51.3 years for droughts of 1-year and 2-years duration, respectively.

  • Development new sediment transport equation for flume
    8th International Scientific Conference on Modern Management of Mine Producing, Geology and Environmental Protection, SGEM 2008, Pages: 43-50, Published: 2008

  • Policies to enhance water sector in Jordan
    Zeyad S. Tarawneh, Nidal A. Hadadin, and Ahmad N. Bdour

    American Journal of Applied Sciences, ISSN: 15469239, eISSN: 15543641, Pages: 698-704, Published: 2008 Science Publications
    We suggested general polices that can be implemented to improve the sustainability and serviceability of the water sector in Jordan. It is suggested that water legislations in Jordan need to be updated to expand the involvement of the private sector to retain sustainable maintenance programmes that effectively mend water distribution systems. Moreover, water resources should be reallocated among competing sectors considering priority to users with purposes that are deemed to have the higher returns in economic and social terms. It is suggested that activating public awareness programmes will raise community understanding and support for water allocation plans among competing water use sectors and improve public participation in developing and accepting new policies related to water management.

  • Downstream hydraulic geometry for incised channels
    N. A. Hadadin

    WIT Transactions on the Built Environment, ISSN: 17433509, Pages: 225-234, Published: 2007 WIT Press
    The DEC Project data was used to develop several regression relationships for incised channels (CEM Type IV or V). The shape factor that was developed for downstream hydraulic geometry regression analysis of CEM Types IV and V incised channel data is ψ = 0.206 0.114 29.39 s S d − . The shape factor (W/d) is directly proportional to the bed material size and inversely proportional to the slope. The effect of discharge on the shape factor is negligible. The physical meaning of this equation is that small slopes and coarse grain sizes produce large width/depth ratios, and steep slopes and fine grain sizes produce small width/depth ratios. Two regression equations were developed for the hydraulic geometry for top width and mean depth with 95% upper and lower confidence interval for incised channels (CEM Types IV and V) in the DEC Project. There were minor differences between the exponents of flow discharge and channel slope between this study and the study of other investigators.

  • Assessment of medical wastes management practice: A case study of the northern part of Jordan
    A. Bdour, B. Altrabsheh, N. Hadadin, and M. Al-Shareif

    Waste Management, ISSN: 0956053X, Pages: 746-759, Published: 2007 Elsevier BV
    This study includes a survey of the procedures available, techniques, and methods of handling and disposing of medical waste at medium (between 100 and 200 beds) to large (over 200 beds) size healthcare facilities located in Irbid city (a major city in the northern part of Jordan). A total of 14 healthcare facilities, including four hospitals and 10 clinical laboratories, serving a total population of about 1.5 million, were surveyed during the course of this research. This study took into consideration both the quantity and quality of the generated wastes to determine generation rates and physical properties. Results of the survey showed that healthcare facilities in Irbid city have less appropriate practices when it comes to the handling, storage, and disposal of wastes generated in comparison to the developed world. There are no defined methods for handling and disposal of these wastes, starting from the personnel responsible for collection through those who transport the wastes to the disposal site. Moreover, there are no specific regulations or guidelines for segregation or classification of these wastes. This means that wastes are mixed, for example, wastes coming from the kitchen with those generated by different departments. Also, more importantly, none of the sites surveyed could provide estimated quantities of waste generated by each department, based upon the known variables within the departments. Average generation rates of total medical wastes in the hospitals were estimated to be 6.10 kg/patient/day (3.49 kg/bed/day), 5.62 kg/patient/day (3.14 kg/bed/day), and 4.02 kg/patient/day (1.88 kg/bed/day) for public, maternity, and private hospitals, respectively. For medical laboratories, rates were found to be in the range of 0.053-0.065 kg/test-day for governmental laboratories, and 0.034-0.102 kg/test-day for private laboratories. Although, based on the type of waste, domestic or general waste makes up a large proportion of the waste volume, so that if such waste is not mixed with patient derived waste, it can be easily handled. However, based on infections, it is important for healthcare staff to take precautions in handling sharps and pathological wastes, which comprises only about 26% of the total infectious wastes. Statistical analysis was conducted to develop mathematical models to aid in the prediction of waste quantities generated by the hospitals studied, or similar sites in the city that are not included in this study. In these models, the number of patients, number of beds, and hospital type were determined to be significant factors on waste generation. Such models provide decision makers with tools to better manage their medical waste, given the dynamic conditions of their healthcare facilities.

  • Environmental issues in Jordan, solutions and recommendations
    Nidal A. Hadadin and Zeyad S. Tarawneh

    American Journal of Environmental Sciences, ISSN: 1553345X, Pages: 30-36, Published: 2007 Science Publications
    Jordan’s natural resources are limited to support population in a sustainable manner. However, its environment is exposed to a number of threats. In order to best explain Jordan’s environmental difficulties, it would be prudent to focus individually on each of these major concerns: water shortages, agriculture/land and air pollution. This study focuses on the environmental problems in Jordan and has addressed the process of reversing environmental decline. A true foundation of environmental protection requires awareness upon the part of the population and a number of governmental and non-governmental organizations are actively involved in educating the populace about environmental issues. This article presents specific recommendations addressing water resources, the areas of agriculture and air pollution. It emphasis throughout on the conservation of water, agriculturally productive land and the quality of air, of which, the contamination or loss of them would bring rapid and significant consequences to Jordan.

  • Watershed models and their applicability to the simulation of the rainfall-runoff relationship
    WIT Transactions on Engineering Sciences, ISSN: 17433533, Pages: 193-202, Published: 2006

  • Investigation in the Brownlie (1981) sediment transport equation in open channels
    European Journal of Scientific Research, ISSN: 1450216X, eISSN: 1450202X, Pages: 258-266, Published: February 2006